
An Evaluation of the Graphical Modeling

Framework (GMF) Based on the Development
of the CORAS Tool

Fredrik Seehusen and Ketil Stølen

SINTEF Information and Communication Technology, Norway
{fredrik.seehusen,ketil.stolen}@sintef.no

Abstract. We present an evaluation of the Graphical Modeling Frame-
work (GMF) based on our experiences in developing an editor for the
risk modeling language CORAS using GMF. Our main hypothesis is
that GMF shortens development time and results in more reliable and
maintainable systems than alternative approaches which are not based
on code generation. We conclude that the hypothesis is true, but that
the answer is not as clear cut as we initially believed, and that there is
still a large potential for improvement.

Keywords: Model-Driven Development, GMF, Domain Specific Lan-
guages, Evaluation.

1 Introduction

We present an evaluation of the Graphical Modeling Framework (GMF) [5] based
on the experiences we got from developing a graphical editor for the risk modeling
language CORAS [11]. GMF builds on the principles of Model-Driven Develop-
ment (MDD) which advocate the use design time models as the basis for code
generation. In the area of domain specific languages, the idea of generating code
from specifications is not new; so-called parser generators have been in use for
a long time. These tools usually take an EBNF-grammar as input, and produce
parsers that transform concrete syntax (such as source code) into abstract syn-
tax. The idea of GMF is similar, the main differences being that the language
grammar is specified as an Ecore model (similar to a UML class diagram model)
instead of EBNF, that the concrete syntax is graphical (not text-based as in the
traditional case), and that GMF not only generates a parser, but also much of
the language editor.

The language that we developed an editor for is called the CORAS language.
The language is graphical and used for the purpose of documenting a risk anal-
ysis. The CORAS language editor was developed as part of a book release on
the CORAS risk analysis method [11].

Software development in the industry is usually not based on code generation
from models. We are therefore primarily interested in comparing the use of GMF
to a development approach which is not based on code generation. Our main

J. Cabot and E. Visser (Eds.): ICMT 2011, LNCS 6707, pp. 152–166, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



An Evaluation of the Graphical Modeling Framework (GMF) 153

hypothesis is that GMF shortens the development time and results in more
reliable and maintainable systems than alternative approaches which are not
based on code generation.

Our evaluation suggests that GMF does shorten development time, but to a
smaller degree than we initially expected. The main reason for this is that the
code which is generated by GMF had to be modified, and this turned out to
be very time consuming. Our evaluation furthermore suggests that GMF may
result in more reliable systems, but that it does not result in more maintainable
systems.

The main lesson learned during the development of the CORAS tool, was that
there is a huge difference (in practice) between transformations that produce
code that to little or no degree should be modified (like parser generators or
compilers), and transformations that produce code that must be modified. In
the former case, it is reasonable to hide the details of the transformation from
the developer through configuration options, but in the latter case this is more
problematic. In fact, we believe that in the latter case, the transformation should
not only be visible to the developer, but that the developer should be expected
(and accommodated) to modify the transformation much in the same way that
the developer is expected to modify the generated source code.

The rest of the paper is structured as follows: in Sect. 2 we introduce basic
concepts of GMF, in Sect. 3 we describe our research method and hypothesis, in
Sect. 4 we describe relevant facts about the CORAS tool and its development
process, in Sect. 5 and Sect. 6 we evaluate GMF w.r.t. our hypotheses and suggest
improvements, respectively. Finally, in Sect. 7 we present related work, and in
Sect. 8 we provide conclusions.

2 The Graphical Modeling Framework (GMF)

.ecore

.gmfgraph

.gmfmap

.genmodel

.gmfgen

EMF code

GMF code

Modified 

GMF code

Custom 

code

Meta-model

(level 0)

Configuration

(level 1)

Generator model

(level 2)

Source code

(level 3)

uses

uses

uses

references

references

EMF generator wizard EMF code

generator

GMF code

Generator

GMF generator wizard

.gmftool

GMF

dashboard

Fig. 1. Transformation in GMF



154 F. Seehusen and K. Stølen

GMF is a framework for developing domain specific languages. GMF is built
on the Eclipse Modeling Framework (EMF) [3] and the Graphical Editing Frame-
work (GEF) [4]. In the context of GMF, EMF is used to define the meta model
or abstract syntax of languages (expressed in Ecore), and for generating code
for creating, editing, and accessing models. GEF is a framework that supports
the development of graphical editors. In the context of GMF, GEF is used to
implement the concrete graphical syntax of languages and for editing of concrete
syntax.

The transformations of GMF are illustrated in Fig. 1. The top-most transfor-
mation consisting of the two arrows taking .ecore into EMF code will be referred
to as the EMF transformation while the arrows taking .ecore into GMF code
will be referred to as the GMF transformation.

As illustrated in Fig. 1, we distinguish between 4 different levels.

The meta model level (level 0). This level contains the meta model which
is the basis of code generation. The meta model used by GMF must be stored
in a format called Ecore.

The configuration level (level 1). This level contains the configuration model
which is used by the GMF transformation (this is not used by the EMF trans-
formation). The configuration model consists of three files: one file which is used
to specify the shapes of the graphical constructs of the language (.gmfgraph),
one file which specifies the language constructs which should appear in the tool
palette of the language editor (.gmftool), and one file (.gmfmap) which maps
the items of the tool palette (defined in .gmftool) to the graphical language
constructs (defined in .gmfgraph) and to the meta model elements.

The default transformation from the meta model at level 0 to the configuration
model at level 1 is based on a series of dialog windows where the user has to
specify what elements of the meta model should be represented as arrows or
nodes in the language editor.

The generator level (level 2). This level contains the code generator models
for both the EMF and the GMF transformations. Both generator models con-
tain a number of parameters that allows the user to customize the source code
generated from the generator models.

The transformation from level 1 to level 2 (or from level 0 to level 2 in the
case of the EMF transformation) is a one-button transformation as opposed to
the dialog based transformation.

The source code level (level 3). This level contains the source code. Here
we distinguish between:

– EMF code generated by the EMF transformation;
– GMF code generated by the GMF transformation, which makes use of the

EMF code as well as the GEF framework;
– modified GMF code, i.e. generated GMF code which has been modified after

generation;



An Evaluation of the Graphical Modeling Framework (GMF) 155

– custom code which has not been generated from the meta model, but which
makes use of the EMF-code and the GMF code.

Note that we do not distinguish between generated EMF code and modified
EMF code. The reason is that we did not have to modify the generated EMF
code (even though it is possible to do so).

The transformation from level 2 to level 3 is also a one-button transforma-
tion. However, the GMF transformation from level 2 to level 3 (which is written
in a language called Xpand) can be customized. This was achieved by putting
the files containing the transformation specification in a special folder with the
same structure as the GMF transformation. When the transformation is exe-
cuted, the transformation in the special folder will be used instead of the origi-
nal transformation. The effect is essentially the same as modifying the original
transformation directly.

In theory, all the modified GMF-code could have been specified in the trans-
formation from level 2 to level 3, but GMF is not intended to be used in this
way. Instead, GMF code which is modified after code generation can be tagged
to ensure that modified code is not overwritten when code generation is executed
at some later point in time.

3 Research Method and Hypotheses

According to [12], research evidence is gathered to maximize three things: the
generalizability of the evidence over populations of actors; the precision of mea-
surement of behavior; the realism of the situation or context. According the clas-
sification of research strategies of [12], our evaluation of GMF is a field study.
Field studies are high on realism, but low on generalizability and precision.

The idea of evaluating GMF did not come about until after we had developed
the CORAS tool. Therefore the development of the CORAS tool was not in any
way biased by our evaluation.

We are primarily interested in comparing the use of GMF to a development
approach which is not based on code generation. For us, a realistic alternative to
using GMF, would have to use Eclipse and GEF. The main differences between
the GMF approach and the alternative approach is that using the alternative
approach, we would have to (1) write the code that uses GEF instead of gen-
erating it using GMF and (2) write the code with similar functionality as the
EMF code, instead of generating it using the EMF transformation. Throughout
the rest of this paper, whenever we write the alternative development approach
(or alternative approach), we refer to the approach described above.

Note that we did not actually develop the CORAS tool using the alternative
approach. Any judgment about the CORAS tool, for instance how long it would
have taken to develop the CORAS tool had we used the alternative approach is
therefore based on educated guesses rather than hard facts.



156 F. Seehusen and K. Stølen

3.1 Hypotheses

The main reason why we chose to use GMF, was that we believed that it would
shorten the development time. In fact, one of our colleagues claimed that it would
only take 2 days to develop the editor using GMF; another colleague estimated
that it would take about 2 weeks. Granted, our colleagues were not familiar with
the requirements of the tool, but we were nevertheless given to believe that using
GMF would shorten development time. Our first hypothesis is therefore:

H1: The time spent on developing the CORAS tool using GMF is shorter than
the time spent on developing the tool had we followed the alternative approach.

The CORAS tool was intended to be used in industrial settings, often on the-fly
during customer meetings. Consequently, the most important requirement of the
CORAS tool (aside from the fact that it had to support the desired functionality)
was its continuous delivery of correct service, also known as its reliability [2]. Our
second hypothesis is therefore:

H2: The CORAS tool is more reliable when developed using GMF than it would
have been if developed using the alternative approach.

From the start, it was anticipated that the CORAS tool would be extended into
new prototype tools according the requirements of projects we were involved in.
Already, we have made three such extensions, and further extensions are planned
in the future. The situation can be described by an inheritance tree where the
initial CORAS tool is the root of the tree, and each of the other tree nodes
represent tool extensions that inherit functionality from their parent nodes in the
tree. We are interested in evaluating how well GMF supports the maintainability
of such an inheritance tree. For the purpose of our GMF evaluation, we therefore
say that the maintainability of a tool is measure of how well it can be extended
into an inheritance tree that satisfies the following requirements:

– The development of a tool in the tree should not affect any of the parents
of that tool. This requirement is to make sure that the development of new
tools does not cause the tools they inherit from to become unreliable.

– Updates made in a tool should automatically or semi- automatically be prop-
agated to all its children in the inheritance tree. If we did not have this
requirement, and made a change in the root node for instance, we would
have to manually update all the other tools of the tree. This would be time-
consuming, and it could potentially lead to reduced reliability.

Our third hypothesis is the following

H3: The CORAS tool is more maintainable when developed using GMF than
it would have been if developed using the alternative approach.

4 Developing the CORAS Tool Using GMF

In this section, we present facts regarding the CORAS tool and the development
setting.



An Evaluation of the Graphical Modeling Framework (GMF) 157

Fig. 2. Screenshot of the CORAS tool

4.1 Development Setting

Initial discussions about the CORAS tool started in September 2009. The tool
requirements were completed in December 2009. The tool development was car-
ried out by a single developer from the end of December 2009 until early May
2010. From February 2010 to May 2010, the developer worked close to full time
on the CORAS tool development. The total time spent on the development was
about 3.5 man months.

The developer is employed as a researcher and has a computer science back-
ground. His programming experience was mostly based on university graduate
courses. The developer was somewhat familiar with Eclipse (the integrated de-
velopment environment that supports GMF), but had no experience with GMF
or the components that GMF builds on (EMF and GEF).

The developer was under pressure to finish the CORAS tool as quickly as
possible. The development approach was based on trial and error; thereby learn-
ing exactly what was needed to get the job done. We do not argue that this is
the best development approach, but merely give an account of what happened.
Moreover, we believe that this situation is not uncommon in many industrial
software projects.

4.2 The CORAS Tool

The CORAS tool is a graphical editor for the CORAS language which is used
for the purpose of documenting risk analyses. CORAS diagrams are essentially
graphs with arrows and nodes. The CORAS tool supports five kinds of diagrams,
and it also supports a hierarchical structure in which one construct may be
decomposed into other constructs to an arbitrary depth. A screenshot of the
tool is shown in Fig. 2.



158 F. Seehusen and K. Stølen

Table. 1 summarizes some statistics about the CORAS tool implementation.
Here the number of modified generated code lines is estimated to be 10 percent
of the code lines of the classes that had to be modified. All the other values are
accurate facts (not estimations).

We have distinguished between code which has been generated by the EMF
code generator, and code which has been generated by the GMF code generator.
Notice that it is only the generated GMF code that had to be modified. Notice
also that 18.5% of the generated GMF classes had to be modified, and that
about 0.6% of the code lines had to be modified.

Table 1. Source code facts

EMF GMF Total

Generated classes 131 465 595
Generated classes modified 0 86 86
Generated code lines 15220 78584 93804
Generated code lines modified 0 4767 4767
New classes 0 48 48
New code lines 0 4436 4436

Proportion of classes modified 0 % 18.50 % 14.45 %
Proportion of code lines modified 0 % 0.6 % 0.5 %

5 Evaluation of GMF

In this section, we evaluate GMF w.r.t. each of the hypotheses described in
Sect. 3.

H1: The time spent on developing the CORAS tool using GMF is shorter than
the time spent on developing the tool had we followed the alternative approach.

The development of the CORAS tool took about 3.5 man-months, which was
more than we anticipated. Since we did have a stable meta model to begin with,
it actually only took a couple of days to generate an initial version of the editor
containing most of the required functionality. The problem was the huge amount
of time required to modify the code that was generated.

Not much of the generated code had to be changed (see Table. 1), but finding
the right places in the generated code to implement the modifications was very
time consuming. It was not uncommon to spend days to search for the right
place to edit, only to change a couple of lines here and there.

So, why did it take so long? One reason is that the developer had no prior
experience with GMF, or the technologies used by GMF (GEF and EMF), and
as it turned out, too little knowledge of Eclipse. Any of these technologies are
challenging to learn on their own right; learning them all at the same time is
even more challenging. Another aspect is poor documentation. In particular, the
source code and the API contained very little documentation. Despite the fact
that we had a book on GMF [7], this book did not address the very specific
changes that we had to make to the generated code. Most of the answers we got



An Evaluation of the Graphical Modeling Framework (GMF) 159

were found browsing the source code, as well as in blogs, forums, presentations,
small tutorials found by searching the Internet.

A lot of the changes we made to the source code that was generated from GMF,
had to be applied to numerous classes. That is, the same change had to be made
to many classes of the same kind (usually meaning that they inherited from the
same super-class contained in a library). Eventually the developer learned to
modify the GMF transformations that generated the source code to implement
these kinds of changes. Of course, if the developer had been aware of these
things from the start, much time could have been saved. This is also true for the
GMF transformation from the meta model to the generator model. Eventually
we found an alternative to the GMF transformation wizard called EuGENia
(which is built on top of Epsilon [9]) which allowed us to generate the graphical
configuration files from an annotated meta model. This worked very well; it
was very easy to learn and the execution of the transformation was reduced to
pressing a button as opposed to clicking through a series of dialogs.

Up until this point, we have argued that most of the development time was
spent on modifying the generated code. However, to address the hypothesis, we
must ask whether GMF shortens development time. To answer this question, it
is useful to distinguish between the EMF transformation and the GMF trans-
formation (as explained in Sect. 2). The former transformation generated code
which we did not have to modify. In our view, the use of the EMF transforma-
tion clearly saved us a lot of time. This should come as no surprise, since the
EMF transformation is similar to well-known parser generators which are clearly
useful.

The GMF transformation is more complex than the EMF transformation.
First of all, it has a lot more configuration options (e.g. for customizing the
graphical constructs that should be implemented). Our initial goal was to do
as much of the customization as possible on the meta model level and on the
configuration level (see Fig. 1), so quite some time was spent on e.g. figuring out
whether or not it was possible to specify the kind of graphical construct that
we needed using the configuration files (instead of having to modify the source
code). It turned out that it was not possible, and eventually the configuration
files were mostly ignored in favor of source code modification.

The main difference between the GMF transformation and the EMF transfor-
mation from the perspective of time use was that the code that was produced by
the GMF transformation had to be modified whereas this was not the case for
EMF. As already explained, the code modification turned out to be the biggest
time drain. Since figuring out how to modify the code took such a long time, it
is hard to say for sure whether or not it would have been faster to write all the
generated code from scratch. However, if we were to make a new graphical editor
with the knowledge we have today of how GMF works, we definitely think that
using the GMF transformation will be faster than writing the code from scratch.
We therefore believe that the hypothesis H1 is true, but that the answer is not
as clear cut as we believed it to be when we started developing the tool.



160 F. Seehusen and K. Stølen

H2: The CORAS tool is more reliable when developed using GMF than it would
have been if developed using the alternative approach.

As mentioned in the previous section, GMF had some bugs, but these were
more of the kind that slowed us down rather than making the generated code
unreliable. After having tested the CORAS tool on students, we have not found
any serious error in the GMF code (apart from the copy/paste functionality).
The few errors that were found were caused by us rather than the GMF code.

The generated GMF code seems to be based on a lot of standard design pat-
terns. This is probably mostly an advantage, but not necessarily if the developer
who has to modify the generated code is not familiar with those patterns. Had
the developer written the code from scratch, he would have used patterns that
he was familiar with and could understand, and would therefore have a much
better understanding of how the code works. Furthermore, the code base would
likely have been smaller and more manageable.

In general we can say this: the time and effort spent on verifying the GMF
transformation (and the code produced by it) is probably greater than the time
and effort we would have spent on verifying the code we would have written
had we followed the alternative approach. In this sense, the generated code
is potentially more reliable. However, if the generated code must be modified,
then the picture is less clear. The reason for this is that modifying code that is
unfamiliar to the developer and which furthermore may be based on patterns
that the developer is not familiar with may cause the developer to modify the
code in a way that it is not intended to be modified. However, had we followed
the alternative approach, we would still have to use GEF which is based on
certain design patterns that must be followed in order to use the framework
properly. In fact, it is probably less likely that GEF is used incorrectly in the
generated code than it is that GEF had been used incorrectly had we followed
the alternative approach.

As explained in Sect. 2, the first time the GMF transformations are executed,
output is generated which has to be modified. When the transformations are
executed again, they will overwrite parts of the output which was generated
from the previous execution, and leave other parts unchanged (presumably the
modified parts). Regarding the transformations from the meta model to the
configuration level, and from the configuration level to the generator model,
it was a bit unclear to us what parts would be overwritten, and what parts
would be changed. This is of course a potential source of error. Regarding the
transformation from the generator model to the source code, it was clear which
parts where overwritten and which were not. The reason for this is that the
developer had to explicitly annotate methods in the generated source code to
indicate that they should not be overwritten during the next execution of the
transformation. However, this approach does by no means guarantee that the
transformation does not generate errors in the code the next time it is run. That
is, changes made in the meta model or on the configuration model could result
in a modification in methods that have been specified not to be overwritten.



An Evaluation of the Graphical Modeling Framework (GMF) 161

The considerations above are potential sources of errors, but they did not as
far as we know, turn out to be any problem w.r.t. to the reliability of the CORAS
tool. However, it is difficult to determine whether this was a coincidence or not.

In conclusion, we believe that the hypothesis is true. The main reason for
this is that we did not discover many errors which affected the reliability of the
GMF code; most of the errors we found were caused by us. Source code which is
generated and should be used many times is more likely to be subjected to a more
detailed verification process than the code which is written from scratch. Despite
the danger of modifying the generated code in a way that violates the design
patterns that are used, this danger also exists if the code had been written from
scratch using third party libraries such as GEF. The possibility of modifying the
output of a transformation may potentially lead to errors when transformations
have to be executed several times. However, according to our experience, this
did not affect the reliability of the CORAS tool to a noticeable extent.

H3: The CORAS tool is more maintainable when developed using GMF than
it would have been if developed using the alternative approach.

As explained in Sect. 3, the CORAS tool has been extended into three new tool
versions. In the process of figuring out how to maintain these different versions,
we discovered that code generation actually made things a lot more difficult for
us. We will now explain this.

Consider the scenario in which we want to extend tool A into a tool B. By
this we mean that we want to develop a new tool B that has a lot of the same
functionality as A, but some of the functionality will be different. A standard
solution to the problem is the following: package A into a component (e.g. a java
jar file or an Eclipse plugin) that can be used by B, e.g. by invoking methods
exposed by the public interface of the component or sub-classing public classes of
A. The problem, however, is that this standard solution is not supported in the
GMF code generation setting. To see this, consider Fig.3. Here tool A has been
decomposed into two parts: ModelA and CodeA where the idea is that CodeA is
generated from ModelA (the same applies for tool B). To extend A into B, it is
possible to both extend the model and the code. Imagine that we try to apply
the standard solution to the problem. We get the following scenario: First we
package the source code of A into a component, then we make a folder/project for
B and import component A into it. Suppose that the model has to be extended.
Since it is not possible to package the model into a component like the source
code, ModelA is copied into the folder of B. The problem now is that when
code CodeB is generated from ModelB, CodeB will contain much of the same
functionality that is contained in package A and it would be very inconvenient
to try to replace the functionality in CodeB that overlaps with the package A
with invocations to A.

The problem is most notable in the cases where CodeA has been modified after
it has been generated from ModelA. If all the modifications had been expressed
in the transformation or in the model, then there would be no need to package
A into a component. However, the problem is still present since GMF does not
support the possibility of packaging models or transformations into components.



162 F. Seehusen and K. Stølen

In summary, we can conclude that the hypothesis H3 is false. The standard
way of extending tools is not supported in the GMF code generation setting.

CodeA

ModelA
A

CodeB

ModelB
B

Fig. 3. Extending A into B

6 Suggested Improvements

The issues regarding poor documentation or the fact that the GMF architecture
was hard to understand are not specific to transformation based development
approaches. In this section, we therefore focus on the transformation aspect of
the GMF framework. In particular we will focus on the GMF transformation
(since we did not find any problems with the EMF transformation).

In Table. 2, we have given an overview of our main suggested improvements
and the problems they are related to. In the following, we discuss each suggestion
in turn.

Table 2. Summary of problems and suggested improvements

Problem Suggested improvement

The dialog based GMF transformation did
not work and was time consuming to use

Avoid human interaction during transfor-
mation execution

Unclear whether changes to generated arti-
facts would be preserved under subsequent
transformation executions

Expose the transformation language to the
end user / avoid changing generated arti-
facts

Lack of modularity support Incorporate traditional programming lan-
guage solutions to modularity

6.1 Avoid Human Interaction During Transformation Execution

The GMF transformation from the meta model to the graphical configura-
tion models was wizard based, i.e. the user could configure the transformation
through a series a dialogs. If the transformation was run a second time, the
transformation would remember the dialog settings of the previous run of the
transformation. Or at least that was the idea. This transformation did not work
properly, but if we ignore that, we still think that the use of dialogs is bad. First,
clicking through a series of dialogs each time the transformation is run is time
consuming. Even though we had a stable meta model to begin with, we ended
up generation the editor countless of times. Second, since the mechanisms of
how the transformation worked was hidden from the user, it was unclear how a
change in the dialog option would affect the transformation.



An Evaluation of the Graphical Modeling Framework (GMF) 163

Based on our experience, we therefore think the use of transformation execu-
tors that require human interaction is a bad idea. As previously discussed, we
eventually ended up using an alternative (called EuGENia) to the GMF transfor-
mation wizard for producing the graphical configuration model. This approach
enabled us to annotate the meta-model with GMF-annotations, and then to
generate the configuration files from the annotated meta-model without any hu-
man interaction. This approach worked far better than the GMF dialog based
approach.

6.2 Expose the Transformation Language to the End User

The generated artifacts on all three levels had to be modified. For the GMF
transformations that generated the configuration level artifacts and the gener-
ated model, it was unclear whether or not the modifications to the artifacts would
be preserved upon subsequent executions of the transformations. One of the rea-
sons for this was that the transformations were hidden from the user; without
understanding how the transformation works it is also hard to understand how
the transformation generates its output.

We therefore suggest that the transformation should be made visible to the
user in the same manner as source code is often made available to program-
mers. Furthermore, we believe that for the GMF model transformations (i.e. the
transformations that do not generate the source code), it is better to modify
the transformations that generate the model artifacts (as opposed to modifying
the generated artifacts) because this gives the user precise control of what the
transformation generates.

This suggestion is made on the basis of our experience with using the lan-
guage Epsilon Object Language (EOL) [8], which we used to customize the GMF
transformations that produced the configuration level models and the generator
model. This approach worked very well. EOL removed the need of modifying
the generated artifacts, and enabled us precisely control the output of the trans-
formation. Furthermore, it was not more difficult or more time consuming to
customize the transformation than to modify the generated artifacts.

One might think that requiring the end user to learn a new language (the
transformation language) could be a problem. However, our experience with
EOL suggests otherwise. In fact, after only seeing a couple of examples of EOL
code, we were able to customize the transformation as needed. Contrasting this
to the months spent on modifying the generated GMF source code, the effort
required to learn how to use the language becomes negligible.

Regarding the GMF transformation (written in Xpand) that generated the
source code, it was fairly clear what parts of the code the Xpand transformation
would change or leave unchanged when it was executed. This is because Xpand
enables the user to annotate methods in the generated code to indicate whether
or not the methods should be overwritten when the transformation is executed
again. However, we believe that it would have been helpful increase the granu-
larity and flexibility of this annotation scheme. For instance, it would have been



164 F. Seehusen and K. Stølen

helpful indicate that certain parts of a method (not just the whole method) have
been modified and should not be overwritten.

W.r.t. source code generators, we do not have enough evidence to determine
whether or not the need of modifying the generated source code (as opposed to
modifying the transformation) is a bad idea.

6.3 Incorporate Traditional Programming Language Solutions to
Modularity

The GMF transformation from the generator model to the source code is can be
customized/extended as explained in Sect. 2. However, we do not believe that
this manner of customization is a good one; it is essentially the same as copying
the source of a library into the current project and then overwriting the code. It
is better to package the library into a component which can be invoked through a
public interface or extended through sub-classing public classes. We believe that
the transformation language should have similar extension capabilities. After all,
GMF can be seen as common library, with the difference that certain parts of
the code are transformations.

7 Related Work

There are not many empirical studies on applying Model-Driven Development
(MDD) in industry settings. A survey of literature reporting experiences from
applying MDD in industry settings can be found in [13], but there is too little
evidence to allow generalization of the results. Nevertheless, many of case studies
mentioned in the surveys report about a 25% productivity gain using MDD over
conventional development. The paper [13] does not address GMF in particular.
Papers that do consider GMF in particular are: [1,6,10,14]. Both [1] and [14]
compare GMF against other domain specific language tools. According to [1],
GMF is the most difficult to use, but it generates very usable editors. The paper
[14] compares GMF against Microsoft DSL Tools, and concludes that GMF
seems to be better accepted by participants of their case study.

In [6], the authors report on the experiences of developing a network mod-
eling tool using GMF. They make two main conclusions: (1) a high level of
programming experience is needed to use GMF properly, and that GMF should
be made easier to use by domain-experts with no particular programming expe-
rience; (2) GMF has shortcomings in providing support for modeling at different
abstraction levels.

In [10], the authors report on a case study where software with identical
functionality was created twice: once using conventional development without
code generation, and once using GMF. The study concludes that development
using GMF was about 9 times faster than conventional development, and that
GMF produced much higher quality of code. A threat to the validity of the study
was that the conventional development was not based on EMF or GEF, but on
.NET and an, according to [10], immature graphical library.



An Evaluation of the Graphical Modeling Framework (GMF) 165

8 Conclusion

We have presented an evaluation of GMF based on our experiences in developing
the CORAS tool. Our hypothesis was that GMF shortens development time, and
that it results in more reliable and maintainable systems than an alternative
development approach which is not based on code generation.

Our evaluation suggests that GMF does shorten development time, but to a
smaller degree than we initially expected. Furthermore, we believe that the use of
GMF may result in more reliable systems, but that it results in less maintainable
systems according to our definition of maintainability.

For code generators that produce code that to a little or no degree should be
modified (like parser generators, compilers, or EMF to a certain extent), it is
perfectly reasonable to hide the transformation from the developer; letting all
the work be done at the model level and in customization files. However, we
believe that this is not OK for transformations (e.g. the GMF transformation)
that must be extensively modified (either by modifying the transformation itself
or the generated artifact). In fact, we believe that in this case, the transforma-
tions should be pushed to the forefront of the development; that the developer
should be expected and accommodated to modify the transformation. GMF does
offer the possibility of modifying one of the three GMF transformations, but in
GMF tutorials and other documentation, this possibility is treated more like an
advanced feature than an important part of the development on par with e.g.
configuration model customization. In fact, the developer was not even aware of
the possibility until far into the development process. Finally, we believe that the
transformations should be extended in much the same way as libraries are ex-
tended when programming. Currently, this is not possible in the transformations
of GMF.

Acknowledgments. The research on which this paper reports has been carried
out within the DIGIT (180052/S10) and the EMERGENCY projects (187799/S10),
funded by the Research Council of Norway, the MASTER and the NESSoS
projects, funded from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreements FP7-216917 and FP7-256980,
respectively.

References

1. Amyot, D., Farah, H., Roy, J.-F.: Evaluation of Development Tools for Domain-
Specific Modeling Languages. In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS,
vol. 4320, pp. 183–197. Springer, Heidelberg (2006)

2. Avizienis, A., Laprie, J.-C., Randell, B.: Fundamental Concepts of Dependability.
Research Report No 1145, LAAS-CNRS (2001)

3. Eclipse. Eclipse modeling framework project (emf) (2011),
http://www.eclipse.org/modeling/gmp (visited February 8, 2011)

4. Eclipse. Graphical editing framework (gef) (2011), http://www.eclipse.org/geff
(visited February 8, 2011)

http://www.eclipse.org/modeling/gmp
http://www.eclipse.org/geff


166 F. Seehusen and K. Stølen

5. Eclipse. Graphical modeling project (gmp) (2011),
http://www.eclipse.org/modeling/emf (visited February 8, 2011)

6. Evans, A., Fernández, M.A., Mohagheghi, P.: Experiences of developing a network
modeling tool using the eclipse environment. In: Paige, R.F., Hartman, A., Rensink,
A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 301–312. Springer, Heidelberg
(2009)

7. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley, Reading (2009)

8. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon object language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

9. Kolvos, D.S.: An Extensible Platform for Specification of Integrated Languages for
Model Management. PhD thesis, Department of Computer Science, University of
York (2008)

10. Krogmann, K., Becker, S.: A case study on model-driven and conventional soft-
ware development: The palladio editor. In: Proc. of tSoftware Engineering 2007
- Beiträge zu den Workshops, Fachtagung des GI-Fachbereichs Softwaretechnik,
vol. 106, pp. 169–176. GI (2007)

11. Lund, M.S., Solhaug, B., Stølen, K.: Model Driven Risk Analysis - The CORAS
Approach. Springer, Heidelberg (2011)

12. McGrath, J.E.: Groups: Interaction and performance. Prentice-Hall, Englewood
Cliffs (1984)

13. Mohagheghi, P., Dehlen, V.: Where is the proof? - A review of experiences from
applying MDE in industry. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA
2008. LNCS, vol. 5095, pp. 432–443. Springer, Heidelberg (2008)

14. Pelechano, V., Albert, M., Muñoz, J., Cetina, C.: Building tools for model driven
development. comparing microsoft dsl tools and eclipse modeling plugins. In: Proc.
of the Actas del Taller sobre Desarrollo de Software Dirigido por Modelos. MDA
y Aplicaciones. CEUR Workshop Proceedings, vol. 227 (2007)

http://www.eclipse.org/modeling/emf

	An Evaluation of the Graphical Modeling Framework (GMF) Based on the Development of the CORAS Tool
	Introduction
	The Graphical Modeling Framework (GMF)
	Research Method and Hypotheses
	Hypotheses

	Developing the CORAS Tool Using GMF
	Development Setting
	The CORAS Tool

	Evaluation of GMF
	Suggested Improvements
	Avoid Human Interaction During Transformation Execution
	Expose the Transformation Language to the End User
	Incorporate Traditional Programming Language Solutions to Modularity

	Related Work
	Conclusion
	References


