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ABSTRACT: This article presents a method consisting of 5 steps for assuring that self-imposed changes 
made by adaptive systems do not compromise safety. The method is intended to be used within the field of 
safety critical systems development with respect to applications where adaptive neural networks are part 
of some process control loop. The method is to provide a means for assuring before commissioning that 
all self-imposed changes resulting from the adaptivity after commissioning will have no adverse effects. 
This is achieved by: 1) identifying and specifying the potential hazards induced by the adaptiveness which 
must be handled during operation; 2) proposing a mechanism for separating the process of control and 
the process of adaptation such that only self-imposed changes with no effect on safety are effectuated; 
3) providing a means for assessing online that self-imposed adaptive changes do not compromise safety.

no change during operation is effectuated before it 
has been assessed that there are no adverse effects. 
In order to provide this assurance, an online but 
out-of-the-loop adaptation and verification strat-
egy is proposed as a mechanism to allow separation 
between the process of adapting the controller and 
the process of control; this is motivated and dis-
cussed in section 2.

The strategy provides a means for safe adaptive 
control by allowing refined versions of the control 
software replace the controller operating in-the-
loop in an iterative adapt-verify-replace process. 
In order to be practically feasible, this approach 
requires that the processes related to the online 
handling of adaptation and verification can be 
effectively automated.

This article is primarily focused on verification 
issues, and then on the ability to verify that the 
control software satisfies safety requirements. In 
order to establish an effective verification process, 
our method emphasises hazard identification and 
a subsequent handling supported by formal meth-
ods in the following major steps:

1. Hazard identification and analysis
2. Risk handling

1 INTRODUCTION

One of the basic activities when developing safety 
critical systems is the identification of operational 
and functional hazards. In order to obtain safety 
approval, all identified hazards must be addressed 
in such a way that documentable evidence that 
these are satisfactorily handled can be provided. 
The method proposed in this article is related to 
the assessment of a specific family of systems, 
namely adaptive neural networks. The knowledge/
functionality of a neural network is embedded 
within its nodes and weights. In order to assess the 
functionality with respect to the presence of hazard-
ous properties, potential hazards must first be iden-
tified. As the inherent functionality of an adaptive 
neural network changes during operation due to its 
adaptiveness, safe functionality may be replaced by 
unsafe functionality. We therefore need specialized 
methodology for assessing that self-imposed adap-
tive changes do not compromise safety. In this paper 
we outline a method supporting online assessment 
of the inherent functionality of the neural network 
against identified hazards and thus provide an 
approach to handle the negative effects associated 
with adaptiveness. This is achieved by assuring that 
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3. Formalisation of safety assertions
4. Knowledge acquisition on adaptation
5. Verification analysis Step 1) accommodates 

issues related to adaptivity and the ability to 
inflict self-imposed changes. In step 2) special 
attention is made to the risks associated with 
the adaptive feature. Step 3) describes the for-
malisation of safety requirements written in 
natural language, the result from step 2), into 
safety assertions in predicate logic. Step 4)
describes the acquisition of knowledge related 
to change inflicted by the adaptation process; 
in this article this is acquisition of the inherent 
functionality of a neural network. Step 5) veri-
fies that the functionality of the network fulfils 
the safety assertions.

This article is structured as follows: Section 1
provides a motivation for and introduction to our 
neural network assessment approach. Section 2
describes the challenges to be addressed. Section 3
defines a system used as an example throughout 
the article. Section 4 elaborates upon the process 
of identifying hazards in neural network appli-
cations. Section 5 addresses issues of risk man-
agement focusing on the need to mitigate some 
hazards during operation. Section 6 describes how 
safety requirements provided as a result from pre-
vious steps can be transformed into safety asser-
tions. Section 7 gives a proposal for the acquisition 
of knowledge from a neural network. Section 8
describes a verification method, and section 9 con-
cludes and presents further work.

2 SAFETY CHALLENGES 
TO BE ADDRESSED

Adaptive systems are proposed or explored in 
many different domains, e.g. health, nuclear 
power production, space exploration and military 
applications, for safety and mission critical con-
trol tasks as indicated in the papers (Beda et al. 
2010), (Nesterov et al. 2009), (Sierhuis et al. 2003), 
(Soares et al. 2006) and (Tallant et al. 2006). The 
motivation is to increase performance by applying 
techniques providing dynamic behaviour capa-
ble of adapting some control function to handle 
unforeseen or otherwise uncertain factors. Evi-
dently there are challenges with respect to deter-
minism and predictability of adaptive systems 
since the behaviour of these types of systems will 
change over time as adaptations are effectuated. 
In a critical application, where there may be unac-
ceptable consequence of certain failures, issues 
related to the possible negative consequence of 
adaptiveness must be resolved in order to allow 
utilisation. There are open questions with respect 

to how to assess the safety of such systems, (Soares 
et al. 2006) and (Tallant et al. 2006). (Tallant et al. 
2006), addressing verification and validation needs 
in emerging safety critical control systems in the 
context of military aerospace applications identify 
non-determinism of intelligent and reasoning sys-
tems as what truly challenges current practices.

If  an adaptive neural network is only allowed to 
operate in system states where there are no safety 
implications of failure, assessment becomes trivial 
but clearly reduces the applicability of the network. 
In order to achieve high applicability, an adaptive 
neural network must be allowed to operate in sys-
tem states where there are safety implications of 
failure. In order to provide assurance that the neu-
ral network will not operate hazardously in these 
states there are basically two choices:

i. Provide assurance before commissioning that 
the adaptation algorithm cannot evolve the net-
work into a hazardous configuration.

ii. Provide assurance before commissioning that 
no change during operation is effectuated before 
it has been assessed that there are no adverse 
effects.

The two choices are basically different in that 
choice i) establishes the safety argument once and 
for all before commissioning while choice ii) allows 
online assessment of change as an integral part of 
the safety argument.

With respect to online learning artificial neu-
ral networks for use in safety and mission critical 
context, requirements related to and means for 
verification and validation are addressed in (Kurd 
2005) and (Taylor 2005). (Kurd 2005) describes the 
SCANN (Safety Critical Artificial Neural Network) 
model and how it can be applied in order to satisfy 
performance goals as well as provide safety argu-
mentation. The SCANN incorporates constraints 
as part of the network model in order to constrain 
adaptation in the manner of choice i) above. Both 
(Kurd 2005) and Taylor (Taylor 2005) discuss 
several methods found in the literature address-
ing different aspects of the lifecycle important for 
verification and validation of a network. Related 
to acquisition of the knowledge represented by a 
trained neural network, the properties specifying 
the network function, both authors identify rule 
extraction techniques as a promising approach 
for demonstrating consistency with requirements. 
A survey of rule extraction techniques is provided 
in (Darbari 2000). (Darbari 2000) identifies that 
many of the approaches to rule extraction is in the 
form of a search problem where a space of candi-
date rules are explored and confirmed by testing of 
individual candidates against the network in order 
to establish valid rules. Although rule extraction 
techniques may offer a promising approach for 
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assessing what a neural network has learnt, we will 
pursue a formal approach in this article, enabling 
the establishment of formal proofs with respect to 
properties of the system.

In order to achieve ii) we propose an online 
but out-of-the-loop adaptation and verification 
strategy. The main idea is to adapt and operate 
on separate instances of the control software. The 
instance which is allowed to be adapted operates 
out-of-the-loop in a background process. The 
instance operating in-the-loop at the sharp end is 
not allowed to adapt and behaves deterministically. 
The goal of the adaptation process is to refine the 
control software such that it provides a control-
ler with as high performance as possible. Changes 
in the operating conditions may represent causes 
that trigger the need to adapt. Regardless of what 
triggered the need to adapt, once a refined version 
of the adapted system has reached some level of 
performance, the adaptation of this instance is 
stopped and the refined version undergoes veri-
fication with respect to the safety requirements. 
Once the refined version is successfully verified it 
may replace the controller operating in-the-loop. 
As the in-the-loop controller is updated, the adap-
tation process may start adapting its instance for a 
future release of a refined version of the controller. 
The process of adaptation, verification and update 
is intended to iterate in a loop providing an incre-
mental refinement of the control software where 
each refinement replacing the in-the-loop control-
ler is assured to satisfy the safety requirements.

In this article, related to the assessment and 
verification of an online learning neural network, 
we pursue choice ii) and the strategy of online but 
out-of-the-loop adaptation because it:

Allows safety assurance by assessment of the 
product (the adapted network), not of the proc-
ess (the adaptation algorithm). The positive 
effect is that only concrete network propos-
als are assessed. As part of the verification is 
automated and performed during operation, a 
challenge is to establish an effective online veri-
fication process.
Supports minimal constraints on the neural net-
work training algorithm or other mechanisms 
for adaptation since the safety argument does 
not rely on the adaptation process.
Supports separation between how to achieve 
functional goals and assessment of consistency 
with safety constraints. If  the adaptation algo-
rithm produces an updated network that does 
not pass verification, the effect is reduced ability 
to meet performance goals, but it does not affect 
safety as the executing version of the network is 
already verified against safety requirements. In 
order to reduce the number of neural networks 

that fails verification, the knowledge acquired 
during verification should be communicated to 
the adaptation process.

3 EXAMPLE OF A SYSTEM

3.1 The system

The system in Figure 1 is taken from (Guarro et al. 
1996), with some extensions and modifications, 
and will be used throughout this article. The opera-
tion of the system is basically the same as described 
in (Guarro et al. 1996) and defined as follows:

A water tank is fed with water from an inflow 
pipe where a water pump is assumed to oper-
ate at constant speed supplying flow of water 
through the piping. The level of water in the 
tank is regulated by control- and stop valves on 
the inflow and outflow pipes. There are placed 
sensors to identify the water level, inflow and 
outflow.
A tank bypass is allowed for emergency mode as 
tank overflows. In this mode, the inflow and out-
flow pipes are directly connected, and the tank is 
isolated via the actuation of the three stop valves 
located on the inlet and outlet sides of the tank 
piping.
The tank flow and level control logic is imple-
mented in an artificial neural network.

3.2 Neural network

The neural network in Figure 2 specifies input 
and output nodes which interface with the sensors 
and actuators to represent the component Neural 
Network in Figure 1. Different neural network 
experts might propose a variety of network imple-
mentations to solve the control problem at hand. 
The network in Figure 2 is just an example of a 
possible configuration illustrating a perceptron 
network, a network model originally developed 
by (Rosenblatt 1958), also known as a multilayer 
feed-forward network, with one hidden layer and 
full connection from one layer to the next. As the 

Figure 1. Example: Tank system.
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network can be adapted online, the internals of the 
network will change depending on the constraints 
or lack of such in the adaptation algorithm. It is 
however expected that the input and output nodes 
will remain the same as these are the interfaces to 
the rest of the system.

A neural network like the one shown in 
Figure 2 may be adapted with e.g. a backpropaga-
tion training algorithm (Rumelhart et al. 1986) or 
other means in order to establish an effective neural 
network learning process. As stated in section 2, we 
want to pursue the assessment of the product, the 
network after training, rather than the adaptation 
process e.g. represented by a training algorithm. As 
a consequence we assume that there exists an effec-
tive process for the adaptation of our network such 
that performance goals are met. In the rest of this 
paper the focus is on describing a possible method 
for the assessment of safety issues and the verifica-
tion of safety requirements.

4 STEP 1: HAZARD IDENTIFICATION 
AND ANALYSIS

4.1 Preliminary Hazard Identification (PHI)

In the PHI phase the goal is to identify the 
operational hazards related to the use of a system. 
Inputs are typically incident and accidents data, 
high-level functional requirements, system context 
descriptions and high-level design specifications. 
Results of the PHI are typically recorded in a pre-
liminary hazard list and are used to re-evaluate the 
nature of the system or refine the system design in 
order to reduce hazards. The system is addressed 
at an abstract level, focusing on the interaction 
between the system and the environment in order 
to identify unwanted effects. HAZOP (IEC61882 
2001) is one recognized method which supports the 
identification of hazards.

Assume that a systematic PHI has been 
conducted on the system in Figure 1 with a com-
monly accepted method and produced the follow-
ing hazard list:

H1  Less water in Tank than the lower bound water 
level

H2  More water in Tank than the upper bound 
water level

H3  Less downstream flow to Sink than lower 
bound downstream flow

H4  More downstream flow to Sink than upper 
bound downstream flow

4.2 Functional Hazard Analysis (FHA)

FTA (Fault Tree Analysis) (IEC61025 2006) is one 
means to find the causes of hazards. The hazards 
from section 4.1 constitute the top events in a 
fault tree analysis where the causes of top events 
are systematically deduced in a top-down fashion. 
The goal of this analysis is to find the minimal cut 
sets. The minimal cut sets define the minimal sets 
of conditions that must be present in order for the 
top event to occur.

This article is not about increasing the robust-
ness of a system in terms of tolerance to faulty 
components. The intention is to verify that the 
control logic embedded within a neural network is 
consistent with safety requirements. In doing so, all 
components of the system are assumed to behave 
as intended. The FTA (IEC61025 2006) serves as a 
means to establish the conditions, the states of the 
individual components in combinations that will 
lead to the top event.

Assume that a systematic FTA (IEC61025 2006) 
has been conducted on the system in Figure 1 tak-
ing the hazards from section 4.1 as top events and 
produced fault trees like in Table 1 where the hazard 
H3 is analysed. The fault tree in Table 1 specifies 
that the hazard H3 can be caused by the following 
three sets of conditions, constituting the minimal 
cut sets for the hazard:

C1 Control valve CV2 opening is below level lower 
bound

C2 The combined event that both the stop valve 
V2 and V3 are closed at the same time

C3 The combined events that stop valve V2 is open 
and V3 is closed (bypass mode) and the control 
valve CV1 opening is below lower bound

The fault tree analysis is a means to identify 
safety requirements. Based on the evaluation of 
the cut sets, the safety requirements as defined 
in Table 2 are specified as a means to prevent the 
events associated with the hazard H3 as described 
by the fault tree in Table 1.

Figure 2. Example: Neural network.
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5 STEP 2: RISK HANDLING

Given that the hazard identification and analysis 
phase has been conducted. The subsequent risk 
handling phase typically evaluates each hazard 
with respect to likelihood of occurrence to pro-
vide a notion of risk. Further, identified risks are 
then evaluated against some predefined notion of 
acceptable and unacceptable risk. A hazard asso-
ciated with some measure of likelihood of occur-
rence constitutes a risk which can be handled in 
basically two ways:

i. Reduce the risk to an acceptable level by some 
means of avoidance or design mitigation.

ii. Accept the risk and leave it unaddressed as it is 
at an acceptable level.

We evade the issue of risk handling under the 
assumption that the likelihoods associated with the 
hazards defined in section 4.1, related to the sys-
tem in Figure 1, are acceptable given that the con-
trol logic embedded within the neural network can 
be guaranteed to satisfy the safety requirements 
specified in Table 2. This means that although 

the system is susceptible to hardware component 
failures, the individual component failure rates are 
within an acceptable level giving sufficient level of 
safety as long as the software driven control logic 
satisfies applicable safety requirements.

6 STEP 3: FORMALISATION 
OF ASSERTIONS

In this third step of the method, it is assumed that 
the preceding steps of the method results in a com-
plete and correct set of safety requirements. This 
means that in order to verify that the system is safe, 
we can verify that the neural network controls the 
actuators of the system in accordance with safety 
requirements like those exemplified in Table 2. The 
safety requirements specify mandatory behaviour 
and address the identified hazards in such a way 
that they prevent unwanted events. In order to 
demonstrate that the system is safe, our method 
emphasizes demonstrating that the control logic 
embedded within the neural network structure and 
parameters satisfy the safety requirements with 
respect to functional behaviour.

The software part of a system fails systemati-
cally. Given a set of well defined functional safety 
requirements, and given well defined software, 
it is possible to formally argue that the software 
either satisfies the requirements or conversely does 
not. In order to provide a compelling argumenta-
tion that the neural network software satisfies the 
requirements, our method proposes a formal rea-
soning approach.

The starting point of the formalisation proc-
ess are the safety requirements as in Table 2. The 
results of the formalisation are referred to as safety 
assertions. The safety assertions are specified in 

Table 1. Fault tree.

FTA-H3: Less downstream flow to Sink than lower bound downstream flow 

OR

Downstream flow

regulating valve set to

less than lower bound

No or less flow through Tank or Bypass 

CV2 less than lower

bound OR

No flow through Less flow through 

Tank or Bypass Tank or Bypass 

AND AND

V2 Closed V3 Closed V2

Open

V3

Closed

CV1 Less

than

lower

bound

Table 2. Example safety requirement.

ID Requirement

SR-H3-C1 Control valve CV2 opening shall 

always be greater than or equal 

to lower bound

SR-H3-C2 Stop valves V2 and V3 shall never 

be closed at the same time

SR-H3-C3 If stop valve V2 is open and V3 

is closed then control valve

CV1 shall always be grater 

than or equal to lower bound
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first order predicatelogic as indicated in Table 3
and Table 4. Each row in Table 3 is a formalisa-
tion of the corresponding row in Table 2. The 
safety assertions provide a means to establish an 
effective process for assessment of the inherent 
functionality of a neural network with respect to 
the safety requirements, which will be described in 
step 4 and 5, section 7 and 8 respectively.

7 STEP 4: KNOWLEDGE ACQUSITION ON 
ADAPTATION

In section 2 we advocate the principle of online 
but out-of-the-loop, iterative adaptation and sub-
sequent verification process. This principle allows 
adaptation in increments where the adaptation and 
verification process is separated from the process 
executing the neural network function. As train-
ing is stopped and there will be no changes to the 
neural network in-the-loop, the internal properties 
of the network at a specific adaptation increment 
will not change and thus is static and provide a 
deterministic function over the input. Acquisition 
of knowledge related to a refined version of a neu-
ral network can easily be obtained by extracting 
the internal properties defining the network from 
its specification, e.g. the values of the weights and 
biases.

A neural network represents a mathematical 
function. The network in Figure 2 fulfils its func-
tion f: X Y by a combination of simple arithme-
tic and transformational operations. The following 
properties are assumed to be contained in the neu-
ral network specification:

The domain of the input nodes which specify 
the possible input activation.
The range of the output nodes which specify the 
possible output activation.
Properties defining the interconnection between 
the nodes like arcs, and weights.
Properties defining the node function e.g. how 
inputs are handled, any bias term and activation 
function.

The network in Figure 2 may be represented as 
a series of assignments where the activation of a 
node (not input node) is specified as an expres-
sion over the nodes in the preceding layer. If  we 
assume for simplicity that the input nodes simply 
pass their values forward to the hidden layer, the 
domain and range for each input node are iden-
tical. The domain of the hidden nodes and the 
output nodes can be deduced from the range of 
the nodes in the preceding layer and the proper-
ties specifying the interconnection to these nodes 
like arcs, weights and bias. The range of the hidden 
nodes and the output nodes can be deduced from 
knowledge concerning their domain and transfer 
function. Once the specification is established it is 
possible to formally deduce important properties 
of the system by the use of substitution and predi-
cate transformation techniques which is the focus 
of step 5 described in section 8.

Before we look into the verification issues with 
respect to a given specification, an example of a 
specification is provided. The network in Figure 2
could be represented by the assignments (1), (2) 
and (3) which provide a definition of a multilayer 
perceptron network. The network is a function 
f: X Y such that:

f(x1, , xn) y1, , yp (1)

h g x g emhh
i

n

i iw m m
xx wg iw m g

1
1 1 1( )x (2)

y g h z g epy
i

m

i ih p pi
xg h zih zh pi g

1

2 1 1( )x (3)

The assignment (2) specifies that a hidden node 
hm is assigned a value by a sigmoid transfer g(x) of 
the sum of the weighted input nodes values plus a 
bias . Likewise, assignment (3) specifies that an 
output node yp is assigned a value by a sigmoid 
transfer g(x) of the sum of the weighted input 

Table 3. Safety assertions.

ID Assertion

A-SR-H3-C1 s: SYSTEM;

cvOpEqMoreThan(cv2, lb, s)

A-SR-H3-C2 s: SYSTEM;

(isClosed(v2, s) isClosed(v3, s))

A-SR-H3-C3 s: SYSTEM;

(isOpen(v2, s) isClosed(v3, s)

cvOpEqMoreThan(cv1, lb, s)

Table 4. Types, constants and functions.

Types

SYSTEM

CONTROLVALVE 

STOPVALVE

Set of states representing the neural 

network software system

cv1, cv2

v2, v3

Constants

BOUND lb

Functions

isClosed STOPVALVE SYSTEM BOOL

isOpen STOPVALVE SYSTEM BOOL

cvOpEqMoreThan CONTROLVALVE

REAL SYSTEM BOOL
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nodes values plus a bias . Once values are assigned 
to the variables x1, … , xn the function propagates 
the values forward in the structure by succes-
sive assignments in order to obtain the values on 
y1, … , yp. It is not presented here how the values 
of the properties wim, zip and  are obtained. Given 
that supervised training can be applied then the 
backpropagation training algorithm (Rumelhart 
et al. 1986), is a commonly used method. The train-
ing algorithm adjusts the internal properties of the 
network such that it satisfies the intended function 
to some acceptable level of error. From section 2,
we have that the out-of-the-loop adaption and 
verification strategy supports minimal constraints 
on the neural network training algorithm since the 
safety argument does not rely on this process. We 
therefore can pursue verification of the trained 
network and not the training process. In the next 
step of the method, described in section 8, it is 
assumed that training is stopped such that the can-
didate version of the network contains concrete 
values for the weights and biases.

8 STEP 5: VERIFICATION ANALYSIS

The neural network can be seen as a function taking 
several parameters and providing several outputs 
in one function call, accomplished by a series of 
successive assignments. The verification analysis 
could therefore be based on the weakest precondi-
tion calculus by (Dijkstra 1975). The weakest pre-
condition calculus states that for a given statement 
S and a postcondition Q, wp(S, Q) denotes the the 
weakest precondition of S satisfying Q.

If  we assume that the neural network specifica-
tion given in the assignments in section 7 repre-
sents S and that the safety assertion S3-H3-C1 in
Table 3 represents Q then it can be shown that S 
will fulfil Q if  any combination of input provided 
by the sensors connected to the neural network 
fulfills wp(S, Q). Provided a similar deductive 
argumentation for all relevant safety assertions, 
then our system can be regarded safe. As an exam-
ple of the wp calculation, assume Figure 3 repre-
sents the neural network after adaptation. If  we 
assume, unrealistically but for the sake of making 
a simple example, that the ’s in this case are all 
zero, the hidden nodes simply pass the weighted 
sum of their inputs forward, and the output nodes 
uses a step function function then (4), (5) and (6) 
specifies the relevant part of a function S to be 
analysed. Assertion A-SR-H3-C2, specifying the 
predicate (isClosed(v2, s) isClosed(v3, s)), can 
be rewritten in terms of the nodes of the network 
as y4 1 y5 1.

f(x1, … , x4) y4, y5 (4)

h3 : x1 w13 x2 w23 x3 w33 x4 w43;
h4 : x1 w14 x2 w24 x3 w34 x4 w44; (5)

if(h3 v34 h4 v44 y4) then [y4 : 1] else [y4 : 0];
if(h3 v34 h4 v45 y5) then [y5 : 1], else [y5 : 0];(6)

The wp calculation on S gives the result pro-
vided in (7):

wp(S, y4 1 y5 1)
((x1 w13 x2 w23 x3 w33 x4 w43) v34

(x1 w14 x2 w24 x3 w34 x4 w44) v44 y4)
((x1 w13 x2 w23 x3 w33 x4 w43) v35

(x1 w14 x2 w24 x3 w34 x4 w44) v45 y5)
(7)

After a period of training, the values of the 
weights w and v, threshold values , and bias val-
ues  are known. In addition, the domain of the 
input nodes are known. To derive the precondi-
tions, or in other words the activation patterns, 
that satisfy the postcondition it is straightforward 
to insert these values in the expression provided in 
7 to finalise the calculation.

In order to establish an effective verification 
process with the weakest precondition calculus 
method, problems related to combinatorial explo-
sion needs to be addressed. As the number of input 
nodes increase, and possibly also may take real val-
ues in some interval, infinitely many activation pat-
terns might establish a postcondition.

9 CONCLUSIONS

In this paper we advocate a strategy of online, 
out-of-the-loop, iterative adaptation and verifica-
tion in order to separate the process of adapting 
and the process of control. This strategy requires 
a mechanism disallowing the in-the-loop control 
software to be replaced by a refined version before 

Figure 3. Reduced neural network.
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the refined version has been successfully verified 
against safety requirements. Given such a mecha-
nism, and the possibility to effectively adapt and 
verify online, we offer possibilities for safe adaptive 
control. The 5 step method outlined in this article 
support pre-commission safety assurance argu-
mentation for systems utilising adaptive compo-
nents by the use of risk assessment techniques to 
identify functional safety requirements, and formal 
methods for argumentation related to a systems 
ability to satisfy these requirements. The set of 
functional safety requirements represents a speci-
fication of behaviour such that if  it is satisfied, 
establishes that the function is safe. The method is 
not concerned with the set of functional require-
ments which have no impact on the safety property 
of the system. A violation of the purely functional 
requirements affects performance rather than 
safety and it is assumed that performance issues 
are addressed more effectively by other means than 
contained in this proposal. The main hypotheses 
argued by this article are:

i. Possible negative effects of adaptiveness can be 
mitigated by a mechanism separating the proc-
ess of adapting and the process of control such 
that a change is not effectuated before its con-
sistency with requirements has been verified.

ii. Hazard identification and analysis techniques 
are suitable to identify operational hazards with 
respect to the possibly unpredictable behaviour 
of adaptive neural networks and provide a 
basis for defining safety requirements.

iii. Given a set of valid safety requirements speci-
fied as formal expressions, the possibly negative 
impact on safety by self-imposed changes can 
be assessed online through processes analysing 
the behaviour of the adapted system against the 
requirements.

The method outlined in this article is a pro-
posal for how to handle potential negative effects 
of adaptiveness in high integrity systems. Related 
work by (Kurd 2005) approaches the problem with 
a different strategy than pursued in this article. 
(Kurd 2005) describes the SCANN model which 
apply constraints in the network such that it can-
not evolve into a hazardous configuration. Safety 
assurance claims related to application of the 
SCANN model are all based on pre-commission 
arguments. The strategy pursued and methods 
emphasised in this article are related to the work 
presented in (Mili et al. 2004) and (Liu et al. 2007). 
(Mili et al. 2004) describe a framework for verifi-
cation of online learning systems. The framework 
presents tentative workon formal methods and 
refinement calculi techniques as means to address 
issues of safe learning. Particularly emphasised in 

the article is the importance of training data on 
the system behaviour. Some of the same authors 
contribute in (Liu et al. 2004) describing an online 
verification strategy like pursued in this article, 
then by the use of monitors. The article presents 
two techniques, one for detecting novel inputs fol-
lowing the argument of the training data impor-
tance on behaviour, and a second technique used 
to monitor the control outputs. The techniques 
are used primarily to address performance issues 
by detecting anomalies in the learning data and to 
provide a reliability measure of the network after 
a change has been effectuated. The paper does not 
clearly state how to establish if  it is safe to effectu-
ate the change.

Further work on the method proposed in this 
article includes a refinement and detailing of the 
method and evaluation of its feasibility in case 
studies. Particularly interesting with respect to 
feasibility studies of the method is indication on 
scalability. One of the challenges of the method is 
possibilities for combinatorial explosion as e.g. the 
number of nodes grows beyond what exemplified 
in this article.
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