
397

Reliability, Risk and Safety – Ale, Papazoglou & Zio (eds)
© 2010 Taylor & Francis Group, London, ISBN 978-0-415-60427-7

Method for assuring that self-imposed changes made by adaptive

systems do not compromise safety

André A. Hauge
OECD Halden Reactor Project, Halden, Norway
Department of Informatics, University of Oslo, Norway

Terje Sivertsen
OECD Halden Reactor Project, Halden, Norway

Ketil Stølen
Sintef ICT, Oslo, Norway
Department of Informatics, University of Oslo, Norway

ABSTRACT: This article presents a method consisting of 5 steps for assuring that self-imposed changes
made by adaptive systems do not compromise safety. The method is intended to be used within the field of
safety critical systems development with respect to applications where adaptive neural networks are part
of some process control loop. The method is to provide a means for assuring before commissioning that
all self-imposed changes resulting from the adaptivity after commissioning will have no adverse effects.
This is achieved by: 1) identifying and specifying the potential hazards induced by the adaptiveness which
must be handled during operation; 2) proposing a mechanism for separating the process of control and
the process of adaptation such that only self-imposed changes with no effect on safety are effectuated;
3) providing a means for assessing online that self-imposed adaptive changes do not compromise safety.

no change during operation is effectuated before it
has been assessed that there are no adverse effects.
In order to provide this assurance, an online but
out-of-the-loop adaptation and verification strat-
egy is proposed as a mechanism to allow separation
between the process of adapting the controller and
the process of control; this is motivated and dis-
cussed in section 2.

The strategy provides a means for safe adaptive
control by allowing refined versions of the control
software replace the controller operating in-the-
loop in an iterative adapt-verify-replace process.
In order to be practically feasible, this approach
requires that the processes related to the online
handling of adaptation and verification can be
effectively automated.

This article is primarily focused on verification
issues, and then on the ability to verify that the
control software satisfies safety requirements. In
order to establish an effective verification process,
our method emphasises hazard identification and
a subsequent handling supported by formal meth-
ods in the following major steps:

1. Hazard identification and analysis
2. Risk handling

1 INTRODUCTION

One of the basic activities when developing safety
critical systems is the identification of operational
and functional hazards. In order to obtain safety
approval, all identified hazards must be addressed
in such a way that documentable evidence that
these are satisfactorily handled can be provided.
The method proposed in this article is related to
the assessment of a specific family of systems,
namely adaptive neural networks. The knowledge/
functionality of a neural network is embedded
within its nodes and weights. In order to assess the
functionality with respect to the presence of hazard-
ous properties, potential hazards must first be iden-
tified. As the inherent functionality of an adaptive
neural network changes during operation due to its
adaptiveness, safe functionality may be replaced by
unsafe functionality. We therefore need specialized
methodology for assessing that self-imposed adap-
tive changes do not compromise safety. In this paper
we outline a method supporting online assessment
of the inherent functionality of the neural network
against identified hazards and thus provide an
approach to handle the negative effects associated
with adaptiveness. This is achieved by assuring that

398

3. Formalisation of safety assertions
4. Knowledge acquisition on adaptation
5. Verification analysis Step 1) accommodates

issues related to adaptivity and the ability to
inflict self-imposed changes. In step 2) special
attention is made to the risks associated with
the adaptive feature. Step 3) describes the for-
malisation of safety requirements written in
natural language, the result from step 2), into
safety assertions in predicate logic. Step 4)
describes the acquisition of knowledge related
to change inflicted by the adaptation process;
in this article this is acquisition of the inherent
functionality of a neural network. Step 5) veri-
fies that the functionality of the network fulfils
the safety assertions.

This article is structured as follows: Section 1
provides a motivation for and introduction to our
neural network assessment approach. Section 2
describes the challenges to be addressed. Section 3
defines a system used as an example throughout
the article. Section 4 elaborates upon the process
of identifying hazards in neural network appli-
cations. Section 5 addresses issues of risk man-
agement focusing on the need to mitigate some
hazards during operation. Section 6 describes how
safety requirements provided as a result from pre-
vious steps can be transformed into safety asser-
tions. Section 7 gives a proposal for the acquisition
of knowledge from a neural network. Section 8
describes a verification method, and section 9 con-
cludes and presents further work.

2 SAFETY CHALLENGES
TO BE ADDRESSED

Adaptive systems are proposed or explored in
many different domains, e.g. health, nuclear
power production, space exploration and military
applications, for safety and mission critical con-
trol tasks as indicated in the papers (Beda et al.
2010), (Nesterov et al. 2009), (Sierhuis et al. 2003),
(Soares et al. 2006) and (Tallant et al. 2006). The
motivation is to increase performance by applying
techniques providing dynamic behaviour capa-
ble of adapting some control function to handle
unforeseen or otherwise uncertain factors. Evi-
dently there are challenges with respect to deter-
minism and predictability of adaptive systems
since the behaviour of these types of systems will
change over time as adaptations are effectuated.
In a critical application, where there may be unac-
ceptable consequence of certain failures, issues
related to the possible negative consequence of
adaptiveness must be resolved in order to allow
utilisation. There are open questions with respect

to how to assess the safety of such systems, (Soares
et al. 2006) and (Tallant et al. 2006). (Tallant et al.
2006), addressing verification and validation needs
in emerging safety critical control systems in the
context of military aerospace applications identify
non-determinism of intelligent and reasoning sys-
tems as what truly challenges current practices.

If an adaptive neural network is only allowed to
operate in system states where there are no safety
implications of failure, assessment becomes trivial
but clearly reduces the applicability of the network.
In order to achieve high applicability, an adaptive
neural network must be allowed to operate in sys-
tem states where there are safety implications of
failure. In order to provide assurance that the neu-
ral network will not operate hazardously in these
states there are basically two choices:

i. Provide assurance before commissioning that
the adaptation algorithm cannot evolve the net-
work into a hazardous configuration.

ii. Provide assurance before commissioning that
no change during operation is effectuated before
it has been assessed that there are no adverse
effects.

The two choices are basically different in that
choice i) establishes the safety argument once and
for all before commissioning while choice ii) allows
online assessment of change as an integral part of
the safety argument.

With respect to online learning artificial neu-
ral networks for use in safety and mission critical
context, requirements related to and means for
verification and validation are addressed in (Kurd
2005) and (Taylor 2005). (Kurd 2005) describes the
SCANN (Safety Critical Artificial Neural Network)
model and how it can be applied in order to satisfy
performance goals as well as provide safety argu-
mentation. The SCANN incorporates constraints
as part of the network model in order to constrain
adaptation in the manner of choice i) above. Both
(Kurd 2005) and Taylor (Taylor 2005) discuss
several methods found in the literature address-
ing different aspects of the lifecycle important for
verification and validation of a network. Related
to acquisition of the knowledge represented by a
trained neural network, the properties specifying
the network function, both authors identify rule
extraction techniques as a promising approach
for demonstrating consistency with requirements.
A survey of rule extraction techniques is provided
in (Darbari 2000). (Darbari 2000) identifies that
many of the approaches to rule extraction is in the
form of a search problem where a space of candi-
date rules are explored and confirmed by testing of
individual candidates against the network in order
to establish valid rules. Although rule extraction
techniques may offer a promising approach for

399

assessing what a neural network has learnt, we will
pursue a formal approach in this article, enabling
the establishment of formal proofs with respect to
properties of the system.

In order to achieve ii) we propose an online
but out-of-the-loop adaptation and verification
strategy. The main idea is to adapt and operate
on separate instances of the control software. The
instance which is allowed to be adapted operates
out-of-the-loop in a background process. The
instance operating in-the-loop at the sharp end is
not allowed to adapt and behaves deterministically.
The goal of the adaptation process is to refine the
control software such that it provides a control-
ler with as high performance as possible. Changes
in the operating conditions may represent causes
that trigger the need to adapt. Regardless of what
triggered the need to adapt, once a refined version
of the adapted system has reached some level of
performance, the adaptation of this instance is
stopped and the refined version undergoes veri-
fication with respect to the safety requirements.
Once the refined version is successfully verified it
may replace the controller operating in-the-loop.
As the in-the-loop controller is updated, the adap-
tation process may start adapting its instance for a
future release of a refined version of the controller.
The process of adaptation, verification and update
is intended to iterate in a loop providing an incre-
mental refinement of the control software where
each refinement replacing the in-the-loop control-
ler is assured to satisfy the safety requirements.

In this article, related to the assessment and
verification of an online learning neural network,
we pursue choice ii) and the strategy of online but
out-of-the-loop adaptation because it:

Allows safety assurance by assessment of the
product (the adapted network), not of the proc-
ess (the adaptation algorithm). The positive
effect is that only concrete network propos-
als are assessed. As part of the verification is
automated and performed during operation, a
challenge is to establish an effective online veri-
fication process.
Supports minimal constraints on the neural net-
work training algorithm or other mechanisms
for adaptation since the safety argument does
not rely on the adaptation process.
Supports separation between how to achieve
functional goals and assessment of consistency
with safety constraints. If the adaptation algo-
rithm produces an updated network that does
not pass verification, the effect is reduced ability
to meet performance goals, but it does not affect
safety as the executing version of the network is
already verified against safety requirements. In
order to reduce the number of neural networks

that fails verification, the knowledge acquired
during verification should be communicated to
the adaptation process.

3 EXAMPLE OF A SYSTEM

3.1 The system

The system in Figure 1 is taken from (Guarro et al.
1996), with some extensions and modifications,
and will be used throughout this article. The opera-
tion of the system is basically the same as described
in (Guarro et al. 1996) and defined as follows:

A water tank is fed with water from an inflow
pipe where a water pump is assumed to oper-
ate at constant speed supplying flow of water
through the piping. The level of water in the
tank is regulated by control- and stop valves on
the inflow and outflow pipes. There are placed
sensors to identify the water level, inflow and
outflow.
A tank bypass is allowed for emergency mode as
tank overflows. In this mode, the inflow and out-
flow pipes are directly connected, and the tank is
isolated via the actuation of the three stop valves
located on the inlet and outlet sides of the tank
piping.
The tank flow and level control logic is imple-
mented in an artificial neural network.

3.2 Neural network

The neural network in Figure 2 specifies input
and output nodes which interface with the sensors
and actuators to represent the component Neural
Network in Figure 1. Different neural network
experts might propose a variety of network imple-
mentations to solve the control problem at hand.
The network in Figure 2 is just an example of a
possible configuration illustrating a perceptron
network, a network model originally developed
by (Rosenblatt 1958), also known as a multilayer
feed-forward network, with one hidden layer and
full connection from one layer to the next. As the

Figure 1. Example: Tank system.

400

network can be adapted online, the internals of the
network will change depending on the constraints
or lack of such in the adaptation algorithm. It is
however expected that the input and output nodes
will remain the same as these are the interfaces to
the rest of the system.

A neural network like the one shown in
Figure 2 may be adapted with e.g. a backpropaga-
tion training algorithm (Rumelhart et al. 1986) or
other means in order to establish an effective neural
network learning process. As stated in section 2, we
want to pursue the assessment of the product, the
network after training, rather than the adaptation
process e.g. represented by a training algorithm. As
a consequence we assume that there exists an effec-
tive process for the adaptation of our network such
that performance goals are met. In the rest of this
paper the focus is on describing a possible method
for the assessment of safety issues and the verifica-
tion of safety requirements.

4 STEP 1: HAZARD IDENTIFICATION
AND ANALYSIS

4.1 Preliminary Hazard Identification (PHI)

In the PHI phase the goal is to identify the
operational hazards related to the use of a system.
Inputs are typically incident and accidents data,
high-level functional requirements, system context
descriptions and high-level design specifications.
Results of the PHI are typically recorded in a pre-
liminary hazard list and are used to re-evaluate the
nature of the system or refine the system design in
order to reduce hazards. The system is addressed
at an abstract level, focusing on the interaction
between the system and the environment in order
to identify unwanted effects. HAZOP (IEC61882
2001) is one recognized method which supports the
identification of hazards.

Assume that a systematic PHI has been
conducted on the system in Figure 1 with a com-
monly accepted method and produced the follow-
ing hazard list:

H1 Less water in Tank than the lower bound water
level

H2 More water in Tank than the upper bound
water level

H3 Less downstream flow to Sink than lower
bound downstream flow

H4 More downstream flow to Sink than upper
bound downstream flow

4.2 Functional Hazard Analysis (FHA)

FTA (Fault Tree Analysis) (IEC61025 2006) is one
means to find the causes of hazards. The hazards
from section 4.1 constitute the top events in a
fault tree analysis where the causes of top events
are systematically deduced in a top-down fashion.
The goal of this analysis is to find the minimal cut
sets. The minimal cut sets define the minimal sets
of conditions that must be present in order for the
top event to occur.

This article is not about increasing the robust-
ness of a system in terms of tolerance to faulty
components. The intention is to verify that the
control logic embedded within a neural network is
consistent with safety requirements. In doing so, all
components of the system are assumed to behave
as intended. The FTA (IEC61025 2006) serves as a
means to establish the conditions, the states of the
individual components in combinations that will
lead to the top event.

Assume that a systematic FTA (IEC61025 2006)
has been conducted on the system in Figure 1 tak-
ing the hazards from section 4.1 as top events and
produced fault trees like in Table 1 where the hazard
H3 is analysed. The fault tree in Table 1 specifies
that the hazard H3 can be caused by the following
three sets of conditions, constituting the minimal
cut sets for the hazard:

C1 Control valve CV2 opening is below level lower
bound

C2 The combined event that both the stop valve
V2 and V3 are closed at the same time

C3 The combined events that stop valve V2 is open
and V3 is closed (bypass mode) and the control
valve CV1 opening is below lower bound

The fault tree analysis is a means to identify
safety requirements. Based on the evaluation of
the cut sets, the safety requirements as defined
in Table 2 are specified as a means to prevent the
events associated with the hazard H3 as described
by the fault tree in Table 1.

Figure 2. Example: Neural network.

401

5 STEP 2: RISK HANDLING

Given that the hazard identification and analysis
phase has been conducted. The subsequent risk
handling phase typically evaluates each hazard
with respect to likelihood of occurrence to pro-
vide a notion of risk. Further, identified risks are
then evaluated against some predefined notion of
acceptable and unacceptable risk. A hazard asso-
ciated with some measure of likelihood of occur-
rence constitutes a risk which can be handled in
basically two ways:

i. Reduce the risk to an acceptable level by some
means of avoidance or design mitigation.

ii. Accept the risk and leave it unaddressed as it is
at an acceptable level.

We evade the issue of risk handling under the
assumption that the likelihoods associated with the
hazards defined in section 4.1, related to the sys-
tem in Figure 1, are acceptable given that the con-
trol logic embedded within the neural network can
be guaranteed to satisfy the safety requirements
specified in Table 2. This means that although

the system is susceptible to hardware component
failures, the individual component failure rates are
within an acceptable level giving sufficient level of
safety as long as the software driven control logic
satisfies applicable safety requirements.

6 STEP 3: FORMALISATION
OF ASSERTIONS

In this third step of the method, it is assumed that
the preceding steps of the method results in a com-
plete and correct set of safety requirements. This
means that in order to verify that the system is safe,
we can verify that the neural network controls the
actuators of the system in accordance with safety
requirements like those exemplified in Table 2. The
safety requirements specify mandatory behaviour
and address the identified hazards in such a way
that they prevent unwanted events. In order to
demonstrate that the system is safe, our method
emphasizes demonstrating that the control logic
embedded within the neural network structure and
parameters satisfy the safety requirements with
respect to functional behaviour.

The software part of a system fails systemati-
cally. Given a set of well defined functional safety
requirements, and given well defined software,
it is possible to formally argue that the software
either satisfies the requirements or conversely does
not. In order to provide a compelling argumenta-
tion that the neural network software satisfies the
requirements, our method proposes a formal rea-
soning approach.

The starting point of the formalisation proc-
ess are the safety requirements as in Table 2. The
results of the formalisation are referred to as safety
assertions. The safety assertions are specified in

Table 1. Fault tree.

FTA-H3: Less downstream flow to Sink than lower bound downstream flow

OR

Downstream flow

regulating valve set to

less than lower bound

No or less flow through Tank or Bypass

CV2 less than lower

bound OR

No flow through Less flow through

Tank or Bypass Tank or Bypass

AND AND

V2 Closed V3 Closed V2

Open

V3

Closed

CV1 Less

than

lower

bound

Table 2. Example safety requirement.

ID Requirement

SR-H3-C1 Control valve CV2 opening shall

always be greater than or equal

to lower bound

SR-H3-C2 Stop valves V2 and V3 shall never

be closed at the same time

SR-H3-C3 If stop valve V2 is open and V3

is closed then control valve

CV1 shall always be grater

than or equal to lower bound

402

first order predicatelogic as indicated in Table 3
and Table 4. Each row in Table 3 is a formalisa-
tion of the corresponding row in Table 2. The
safety assertions provide a means to establish an
effective process for assessment of the inherent
functionality of a neural network with respect to
the safety requirements, which will be described in
step 4 and 5, section 7 and 8 respectively.

7 STEP 4: KNOWLEDGE ACQUSITION ON
ADAPTATION

In section 2 we advocate the principle of online
but out-of-the-loop, iterative adaptation and sub-
sequent verification process. This principle allows
adaptation in increments where the adaptation and
verification process is separated from the process
executing the neural network function. As train-
ing is stopped and there will be no changes to the
neural network in-the-loop, the internal properties
of the network at a specific adaptation increment
will not change and thus is static and provide a
deterministic function over the input. Acquisition
of knowledge related to a refined version of a neu-
ral network can easily be obtained by extracting
the internal properties defining the network from
its specification, e.g. the values of the weights and
biases.

A neural network represents a mathematical
function. The network in Figure 2 fulfils its func-
tion f: X Y by a combination of simple arithme-
tic and transformational operations. The following
properties are assumed to be contained in the neu-
ral network specification:

The domain of the input nodes which specify
the possible input activation.
The range of the output nodes which specify the
possible output activation.
Properties defining the interconnection between
the nodes like arcs, and weights.
Properties defining the node function e.g. how
inputs are handled, any bias term and activation
function.

The network in Figure 2 may be represented as
a series of assignments where the activation of a
node (not input node) is specified as an expres-
sion over the nodes in the preceding layer. If we
assume for simplicity that the input nodes simply
pass their values forward to the hidden layer, the
domain and range for each input node are iden-
tical. The domain of the hidden nodes and the
output nodes can be deduced from the range of
the nodes in the preceding layer and the proper-
ties specifying the interconnection to these nodes
like arcs, weights and bias. The range of the hidden
nodes and the output nodes can be deduced from
knowledge concerning their domain and transfer
function. Once the specification is established it is
possible to formally deduce important properties
of the system by the use of substitution and predi-
cate transformation techniques which is the focus
of step 5 described in section 8.

Before we look into the verification issues with
respect to a given specification, an example of a
specification is provided. The network in Figure 2
could be represented by the assignments (1), (2)
and (3) which provide a definition of a multilayer
perceptron network. The network is a function
f: X Y such that:

f(x1, , xn) y1, , yp (1)

h g x g emhh
i

n

i iw m m
xx wg iw m g

1
1 1 1()x (2)

y g h z g epy
i

m

i ih p pi
xg h zih zh pi g

1

2 1 1()x (3)

The assignment (2) specifies that a hidden node
hm is assigned a value by a sigmoid transfer g(x) of
the sum of the weighted input nodes values plus a
bias . Likewise, assignment (3) specifies that an
output node yp is assigned a value by a sigmoid
transfer g(x) of the sum of the weighted input

Table 3. Safety assertions.

ID Assertion

A-SR-H3-C1 s: SYSTEM;

cvOpEqMoreThan(cv2, lb, s)

A-SR-H3-C2 s: SYSTEM;

(isClosed(v2, s) isClosed(v3, s))

A-SR-H3-C3 s: SYSTEM;

(isOpen(v2, s) isClosed(v3, s)

cvOpEqMoreThan(cv1, lb, s)

Table 4. Types, constants and functions.

Types

SYSTEM

CONTROLVALVE

STOPVALVE

Set of states representing the neural

network software system

cv1, cv2

v2, v3

Constants

BOUND lb

Functions

isClosed STOPVALVE SYSTEM BOOL

isOpen STOPVALVE SYSTEM BOOL

cvOpEqMoreThan CONTROLVALVE

REAL SYSTEM BOOL

403

nodes values plus a bias . Once values are assigned
to the variables x1, … , xn the function propagates
the values forward in the structure by succes-
sive assignments in order to obtain the values on
y1, … , yp. It is not presented here how the values
of the properties wim, zip and are obtained. Given
that supervised training can be applied then the
backpropagation training algorithm (Rumelhart
et al. 1986), is a commonly used method. The train-
ing algorithm adjusts the internal properties of the
network such that it satisfies the intended function
to some acceptable level of error. From section 2,
we have that the out-of-the-loop adaption and
verification strategy supports minimal constraints
on the neural network training algorithm since the
safety argument does not rely on this process. We
therefore can pursue verification of the trained
network and not the training process. In the next
step of the method, described in section 8, it is
assumed that training is stopped such that the can-
didate version of the network contains concrete
values for the weights and biases.

8 STEP 5: VERIFICATION ANALYSIS

The neural network can be seen as a function taking
several parameters and providing several outputs
in one function call, accomplished by a series of
successive assignments. The verification analysis
could therefore be based on the weakest precondi-
tion calculus by (Dijkstra 1975). The weakest pre-
condition calculus states that for a given statement
S and a postcondition Q, wp(S, Q) denotes the the
weakest precondition of S satisfying Q.

If we assume that the neural network specifica-
tion given in the assignments in section 7 repre-
sents S and that the safety assertion S3-H3-C1 in
Table 3 represents Q then it can be shown that S
will fulfil Q if any combination of input provided
by the sensors connected to the neural network
fulfills wp(S, Q). Provided a similar deductive
argumentation for all relevant safety assertions,
then our system can be regarded safe. As an exam-
ple of the wp calculation, assume Figure 3 repre-
sents the neural network after adaptation. If we
assume, unrealistically but for the sake of making
a simple example, that the ’s in this case are all
zero, the hidden nodes simply pass the weighted
sum of their inputs forward, and the output nodes
uses a step function function then (4), (5) and (6)
specifies the relevant part of a function S to be
analysed. Assertion A-SR-H3-C2, specifying the
predicate (isClosed(v2, s) isClosed(v3, s)), can
be rewritten in terms of the nodes of the network
as y4 1 y5 1.

f(x1, … , x4) y4, y5 (4)

h3 : x1 w13 x2 w23 x3 w33 x4 w43;
h4 : x1 w14 x2 w24 x3 w34 x4 w44; (5)

if(h3 v34 h4 v44 y4) then [y4 : 1] else [y4 : 0];
if(h3 v34 h4 v45 y5) then [y5 : 1], else [y5 : 0];(6)

The wp calculation on S gives the result pro-
vided in (7):

wp(S, y4 1 y5 1)
((x1 w13 x2 w23 x3 w33 x4 w43) v34

(x1 w14 x2 w24 x3 w34 x4 w44) v44 y4)
((x1 w13 x2 w23 x3 w33 x4 w43) v35

(x1 w14 x2 w24 x3 w34 x4 w44) v45 y5)
(7)

After a period of training, the values of the
weights w and v, threshold values , and bias val-
ues are known. In addition, the domain of the
input nodes are known. To derive the precondi-
tions, or in other words the activation patterns,
that satisfy the postcondition it is straightforward
to insert these values in the expression provided in
7 to finalise the calculation.

In order to establish an effective verification
process with the weakest precondition calculus
method, problems related to combinatorial explo-
sion needs to be addressed. As the number of input
nodes increase, and possibly also may take real val-
ues in some interval, infinitely many activation pat-
terns might establish a postcondition.

9 CONCLUSIONS

In this paper we advocate a strategy of online,
out-of-the-loop, iterative adaptation and verifica-
tion in order to separate the process of adapting
and the process of control. This strategy requires
a mechanism disallowing the in-the-loop control
software to be replaced by a refined version before

Figure 3. Reduced neural network.

404

the refined version has been successfully verified
against safety requirements. Given such a mecha-
nism, and the possibility to effectively adapt and
verify online, we offer possibilities for safe adaptive
control. The 5 step method outlined in this article
support pre-commission safety assurance argu-
mentation for systems utilising adaptive compo-
nents by the use of risk assessment techniques to
identify functional safety requirements, and formal
methods for argumentation related to a systems
ability to satisfy these requirements. The set of
functional safety requirements represents a speci-
fication of behaviour such that if it is satisfied,
establishes that the function is safe. The method is
not concerned with the set of functional require-
ments which have no impact on the safety property
of the system. A violation of the purely functional
requirements affects performance rather than
safety and it is assumed that performance issues
are addressed more effectively by other means than
contained in this proposal. The main hypotheses
argued by this article are:

i. Possible negative effects of adaptiveness can be
mitigated by a mechanism separating the proc-
ess of adapting and the process of control such
that a change is not effectuated before its con-
sistency with requirements has been verified.

ii. Hazard identification and analysis techniques
are suitable to identify operational hazards with
respect to the possibly unpredictable behaviour
of adaptive neural networks and provide a
basis for defining safety requirements.

iii. Given a set of valid safety requirements speci-
fied as formal expressions, the possibly negative
impact on safety by self-imposed changes can
be assessed online through processes analysing
the behaviour of the adapted system against the
requirements.

The method outlined in this article is a pro-
posal for how to handle potential negative effects
of adaptiveness in high integrity systems. Related
work by (Kurd 2005) approaches the problem with
a different strategy than pursued in this article.
(Kurd 2005) describes the SCANN model which
apply constraints in the network such that it can-
not evolve into a hazardous configuration. Safety
assurance claims related to application of the
SCANN model are all based on pre-commission
arguments. The strategy pursued and methods
emphasised in this article are related to the work
presented in (Mili et al. 2004) and (Liu et al. 2007).
(Mili et al. 2004) describe a framework for verifi-
cation of online learning systems. The framework
presents tentative workon formal methods and
refinement calculi techniques as means to address
issues of safe learning. Particularly emphasised in

the article is the importance of training data on
the system behaviour. Some of the same authors
contribute in (Liu et al. 2004) describing an online
verification strategy like pursued in this article,
then by the use of monitors. The article presents
two techniques, one for detecting novel inputs fol-
lowing the argument of the training data impor-
tance on behaviour, and a second technique used
to monitor the control outputs. The techniques
are used primarily to address performance issues
by detecting anomalies in the learning data and to
provide a reliability measure of the network after
a change has been effectuated. The paper does not
clearly state how to establish if it is safe to effectu-
ate the change.

Further work on the method proposed in this
article includes a refinement and detailing of the
method and evaluation of its feasibility in case
studies. Particularly interesting with respect to
feasibility studies of the method is indication on
scalability. One of the challenges of the method is
possibilities for combinatorial explosion as e.g. the
number of nodes grows beyond what exemplified
in this article.

REFERENCES

Beda, A., P. Spieth, T. Handzsuj, P. Pelosi, N. Carvalho,

E. Koch, T. Koch, and M. Gama de Abreu (2010).

A novel adaptive control system for noisy pressure-

controlled ventilation: a numerical simulation and

bench test study. Intensive Care Med 36(1).

Darbari, A. (2000). Rule extraction from trained ANN:

A survey. Technical Report WV-2000-03, Department

of Computer Science, Dresden University of Technol-

ogy, Germany.

Dijkstra, E. (1975). Guarded commands, nondetermi-

nacy and formal derivation of programs. Communica-

tions of the ACM 18(8), 453–457.

Guarro, S., M. Yau, and M. Motamed (1996). Develop-

ment of tools for safety analysis of control software

in advanced reactors. Technical Report NUREG/

CR–6465, Nuclear Regulatory Commission,

Washington DC, United States.

IEC61025 (2006). IEC 61025: Fault tree analysis (FTA).

International Electrotechnical Commission.

IEC61882 (2001). IEC 61882: Hazard and operability

studies (HAZOP studies) - Application guide. Interna-

tional Electrotechnical Commission.

Kurd, Z. (2005). Artificial Neural Networks in Safety-

critical Applications. Ph. D. thesis, Department of

Computer Science, University of York.

Liu, Y., B. Cukic, and S. Gururajan (2007). Validating

neural network-based online adaptive systems: a case

study. Software Quality Journal 15(3), 309–326.

Mili, A., G. Jiang, B. Cukic, Y. Liu, and R. Ben Ayed

(2004). Towards the verification and validation of

online learning systems: General framework and

applications. Hawaii International Conference on

System Sciences 9, 90304.1.

405

Nesterov, Y., M. Pikin, and E. Romanovskaya (2009).

Development of technological algorithms for auto-

mated process control systems of power units. Ther-

mal Engineering 56(10), 827–831.

Rosenblatt, F. (1958). The perceptron: A probabilistic

model for information storage and organization in the

brain. Psychological Review 65(6), 386–408.

Rumelhart, D., G. Hinton, and R. Williams (1986).

Learning internal representations by error propaga-

tion. Parallel Distributed Processing: Explorations in

the Microstructure of Cognition, vol. 1: foundations,

318–362.

Sierhuis, M., J. M. Bradshaw, A. Acquisti, R. van Hoof,

R. Jeffers, and A. Uszok (2003). Human-agent team-

work and adjustable autonomy in practice. In Pro-

ceeding of the Seventh International Symposium on

Artificial Intelligence, Robotics and Automation in

Space.

Soares, F., J. Burken, and T. Marwala (2006). Neural

network applications in advanced aircraft flight con-

trol system, a hybrid system, a flight test demonstra-

tion. In Neural Information Processing, Volume 4234

of Lecture Notes in Computer Science, pp. 684–691.

Springer.

Tallant, G., P. Bose, J. Buffington, V. Crum, R. Hull,

T. Johnson, B. Krogh, and R. Prasanth (2006).

Validation & verification of intelligent and adaptive

control systems. In IEEE Aerospace Conference.

 Taylor, B.J. (2005). Methods and Procedures for the Veri-

fication and Validation of Artificial Neural Networks.

Springer.

