
4 Semantics of UML Models for Dynamic

Behavior

A Survey of Different Approaches

Mass Soldal Lund1, Atle Refsdal1, and Ketil Stølen1,2

1 SINTEF ICT, Norway
{Mass.S.Lund,Atle.Refsdal,Ketil.Stolen}@sintef.no
2 Department of Informatics, University of Oslo, Norway

Abstract. Models are used for a number of different purposes, from
the requirements capture and design of a new system, to the testing
of an existing system. Many different modeling languages are available,
and the semantics given for the languages vary from informal natural
language descriptions to various kinds of mathematical or logical defini-
tions. When choosing a modeling language and accompanying semantics,
a number of things need to be taken into consideration, such as who are
the users of the models, what is the purpose of the models, what kind
of application is being modeled, and what are the essential features that
must be captured.

When modeling embedded systems, an essential aspect is the inter-
action between hardware and software. Hence, we need to capture the
behavior of the hardware and software components. For capturing the
dynamic behavior of components, modeling languages like UML sequence
diagrams, state machines and similar notations are often used. This pa-
per surveys different approaches to formally capturing the semantics of
models expressed using languages of this kind.

4.1 Introduction

In the context of development of embedded systems, a model is a description
of a computer system, possibly including its human users, controlled process or
environment, in some modeling language. Modeling plays an increasingly im-
portant role and is used for a number of purposes throughout the lifetime of a
system, from initial requirements capture and design to testing and maintenance
of the running system. Some models are intended to be processed automatically,
for example by code generators or model checkers, while other models are used
as an aid in communication between for example system developers and client
representatives.

A large number of languages for modeling computer systems are available.
The semantics given for the languages range from natural language explanations
of modeling language constructs and examples to highly formal mathematical
or logical definitions. When choosing a language and accompanying semantics, a

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 77–103, 2010.
� Springer-Verlag Berlin Heidelberg 2010



78 M.S. Lund, A. Refsdal, and K. Stølen

number of issues need to be taken into consideration. One question is: Who will
use the models, and what level of training do they have? Clearly, the language
need to have a notation that is understandable by the users of the models, at
least at an intuitive level. As an example, mathematical and logical formulas
may be well understood by computer scientists and some developers, but will be
incomprehensible for most client representatives.

Another question is: What is the purpose of the models? If the models are to
be used for giving formal proofs of system properties, then the language must be
supported by a formal semantics defined in clear mathematical or logical terms.
If the models will be used for code generation or automatic model checking then
we need to ensure that the semantics can also be processed by a computer.
On the other hand, if the models are intended for communicating with client
representatives then a natural language explanation of the language features
may be appropriate.

A third question is: What kind of system is being modeled, and what are the
essential features or properties that need to be captured by the models? For
example, capturing real-time requirements may be essential when modeling an
emergency communication network, but of little importance when designing a
chocolate automaton.

For embedded systems, the interaction between software and hardware com-
ponents is an essential feature. This means that we need to model the behavior
of hardware as well as software components, and in particular their mutual in-
teraction. For capturing dynamic component behavior, modeling languages like
UML [1] sequence diagrams and state machines are currently the most highly
profiled.

This paper surveys approaches to giving formal semantics to models expressed
in UML sequence diagrams, state machines or similar notations, such as MSC
[2], LSC [3], the Statecharts language [4], SDL [5], etc. An overview is given of
different types of semantics and their strong and weak points. The survey is not
exhaustive, but covers the most common variants. The survey does not address
semantics for hybrid models which is a field in its own [6, 7].

The rest of this paper is organized as follows: Sect. 4.2 characterizes the scope
of the survey and defines more carefully notions like “model”, “semantics”, and
“embedded system”. Furthermore, the semantic challenges related to embed-
ded systems are discussed and summarized as a set of criteria against which
the different approaches should be evaluated. In Sect. 4.3, the different types of
semantics and their strong and weak points are discussed. Sect. 4.4 presents a
survey of semantics approaches for UML sequence diagrams and similar nota-
tions. Section 4.5 is similar to Sect. 4.4, except that we now consider semantic
approaches for UML state machines and similar notations. In Sect. 4.6 we eva-
luate the semantic approaches surveyed in the previous two sections with respect
to the evaluation criteria formulated in Sect. 4.2. Summary and conclusions are
given in Sect. 4.7.



Semantics of UML Models for Dynamic Behavior 79

4.2 Characterization of Scope, Main Notions, and
Criteria for Evaluation

Embedded systems can be defined as “combinations of computer hardware and
software, and perhaps mechanical or other parts, designed to perform dedicated
functions”1 or “programmable, electronic (often in combination with mechani-
cal) systems that control and determine the functioning of devices (machines,
appliances, instruments, constructions).”2 MP3 players, routers, sensors, copying
machines, and cars are examples of embedded systems. The fact that embed-
ded systems, unlike general purpose computers, are dedicated to specific tasks,
means that they can be optimized with respect to for example performance or
reliability.3

A model is a description of a system in some modeling language, such as the
UML. The semantics of a model explains what the model means. More exactly,
the semantics of a model is a function mapping the syntactically well-formed
models of the modeling language into syntactically well-formed expressions in a
language that is well understood. What is a well-understood language depends
on the intended users of the semantics. It often makes sense to define several
equivalent semantics for the same modeling language; for example, an axioma-
tic semantics for logical deduction, a denotational semantics for mathematical
reasoning, an operational semantics for building tools, and a natural language
semantics to explain the language to its end-users. If the expressions of the mo-
deling language is mapped into a mathematical or logical domain so that the
semantic representation can be manipulated and analyzed using well-established
mathematical and logical techniques, we say that the language has a formal
semantics.

When modeling and developing embedded systems, several considerations
need to be taken into account. One is that the close interplay between dedicated
hardware and software components means that there is less room for corrections
and refactoring during the development process than for conventional computer
systems. A formal approach to model analysis and incremental development is
therefore highly desirable when developing embedded systems. Hence, modeling
languages should be supported by formal semantics, as well as definitions of
refinement characterizing what it means for a more concrete or detailed model
to “implement” or fulfill the requirements of a more abstract model. This re-
duces ambiguity and facilitates rigorous, and possibly automated, mathematical
or logical proof of system properties.

An essential requisite for an incremental development process is the ability
to leave some decisions open for later development steps. Consequently, we need

1 From Netrino embedded systems glossary:
http://www.netrino.com/Embedded-Systems/Glossary

2 From Embedded Systems Institute:
http://www.esi.nl/frames.html?/institute/research.html

3 Other examples are characteristics such as size and power usage, but this is outside
the scope of this paper.

http://www.netrino.com/Embedded-Systems/Glossary
http://www.esi.nl/frames.html?/institute/research.html


80 M.S. Lund, A. Refsdal, and K. Stølen

a modeling language that has the ability to express underspecification or im-
plementation freedom. By this we mean that a model may explicitly provide
alternative ways of fulfilling a task, so that the choice is left open to those res-
ponsible for implementing or further refining the specification. Moreover, in an
incremental development process one cannot describe all the relevant system
behavior in a single step. Thus we want to be able to produce models that are
incomplete in the sense that not all system behavior has been considered and
categorized as either positive (acceptable, desirable) or negative.

Finally, there is the issue of the kinds of features or properties that can be
captured by the modeling language. Properties can be categorized according to
the basis on which they are falsified: Properties that can be falsified on the basis
of a single trace are called trace properties, while properties that are falsified
on the basis of a set of traces are called trace-set properties [8].4 Examples of
trace properties are safety and liveness [9, 10], while permissions often used
in relation to policies and many information flow properties are examples of
trace set properties. Most modeling languages are well-suited to capture trace
properties, but only some allow us to specify trace-set properties as something
distinguishable from underspecification. Distinguishing trace-set properties from
underspecification is necessary since trace-set properties should be preserved
under refinement while this is not the case for underspecification.

Performance and reliability requirements are usually of high importance for
embedded systems. This is for example the case for routers and sensors. In-
deed, in many cases the motivation for building a dedicated embedded system
is to achieve high performance and reliability. Performance and reliability requi-
rements are typically expressed in terms of time and/or probability. Therefore,
modeling languages for embedded systems should ideally have the ability to cap-
ture real-time requirements (a special kind of trace properties) and probabilistic
requirements (a special kind of trace-set properties). These requirements should
be fully integrated in the semantics of the models in order to ensure that they
are taken into account when analyzing the models.

Based on the above considerations, we have identified the following questions
that we will use to evaluate the surveyed semantic approaches:

– What kind of semantics is given?
– Can underspecification be represented?
– Can trace-set properties be represented?
– Can incomplete models be represented?
– Is the approach supported by definitions of refinement?
– Can real-time requirements be captured by the semantics?
– Can probabilistic requirements be captured by the semantics?

In the following we survey and evaluate a number of semantic approaches with
respect to these questions. But first we give an overview of main categories of
semantics of relevance.

4 In [8], the term possibilistic properties is used instead of trace set properties.



Semantics of UML Models for Dynamic Behavior 81

4.3 Main Categories of Semantics

At an overall level, semantics of modeling languages can be categorized based on
whether they are formal or not, i.e. whether the expressions of the modeling lan-
guage are mapped into a mathematical or logical domain, or explained in natural
language. An advantage with natural language explanations is that they can be
understood by anyone, without requiring specialized training. However, natural
language explanations tend to be ambiguous and often contain inconsistencies.
For example, this is the case with the UML semantics provided by the Object
Management Group (OMG) [11, 12, 13]. Formalizing the semantics of a language
will help uncover ambiguities and inconsistencies. Moreover, formal semantics al-
lows models to be analyzed with mathematical and logical tools and techniques,
thus allowing system properties to be explored in a rigorous manner before the
implemented system even exists. Being able to perform this kind of analysis as
early as possible is particularly important when developing embedded systems,
as the cost of redesigning dedicated components at a late stage typically will be
high. Hence, a formal semantics is needed for the development process. There
are, however, different styles of formalizing semantics, each with their strong and
weak points. For the graphical modeling languages we are concerned with in this
paper, denotational and operational semantics are the most relevant styles. We
now look at these two styles of semantics and their strong and weak points.

David A. Schmidt [14] provides the following explanation for a denotational
semantics:

The denotational semantics method maps a program directly to its meaning,
called its denotation. The denotation is usually a mathematical value, such as
a number or function. No interpreters are used; a valuation function maps a
program directly to its meaning.

This corresponds well with the explanation given by Andreas Prinz [12, p. 149]
The basic idea is to give a denotation to every element of the language. This
means to map the syntactical expressions of the language to a well-known
domain.

Denotational semantics typically allows a fairly abstract system description. As
they also build on known domains, they are well suited for mathematical rea-
soning and formal proof of properties. On the negative side, a denotational se-
mantics provides little guidance for tool developers and will typically be too
complex for users. Expressing states and operations is usually difficult with a
denotational semantics.

For operational semantics, [14] suggests the following definition:
The operational semantics method uses an interpreter to define a language.
The meaning of a program in the language is the evaluation history that the
interpreter produces when it interprets the program. The evaluation history is
a sequence of internal configurations [. . . ]

As a methodology for language development he suggests that “a denotational
semantics is defined to give the meaning of the language” and that “the deno-
tational definition is implemented using an operational definition” [14, p. 4].



82 M.S. Lund, A. Refsdal, and K. Stølen

Table 4.1. Different styles of semantics

Type of Advantages Disadvantages

semantics

Informal − Easy to communicate − Tends to be ambiguous

− Does not require − Often contains

specialized training inconsistencies

− Cannot be formally

analyzed

Denotational − Allows a fairly abstract − Provides little guidance

system description for tool developers

− Builds on known − Too complex for users

domains − Expressing states and

− Well suited for operations is usually

mathematical reasoning difficult

and formal analysis of

properties

Operational − Provides good − Tends to be very detailed

formalization of − It is often difficult to

implementation derive formal proofs

− Well suited for building − Relies on the underlying

tools semantics of the

− Expressing states and abstract computer

operations is usually

easy

Hoare and He [15, p. 258] describe more explicitly the notion of an operational
semantics:

An operational semantics of a programming language is one that defines not
the observable overall effect of a program but rather suggests a complete set of
possible individual steps which may be taken in its execution. The observable
effect can then be obtained by embedding the steps into an iterative loop [. . . ]

Taken together, these two descriptions suggest that formalizing an operational
semantics of a language is to define an interpreter for the language. The formal
definition of the interpreter describes every step that can be made in the execu-
tion of the language in such a way that the executions are in conformance with
the meaning of the language as defined by a denotational semantics.

Major advantages of operational semantics is that such semantics provides good
formalization of implementation and is well suited for building tools. It is also
typically well suited for state-based languages. On the other hand, operational



Semantics of UML Models for Dynamic Behavior 83

semantics tends to be very detailed, and it is often difficult to derive formal proof
from operational semantics. Besides, an operational semantics relies on the under-
lying semantics of the abstract computer on which the interpreter is assumed to
run [12]. Table 4.1 summarizes the strong and weak points of the different styles
of semantics discussed above.

In the next three section we present and discuss a number of approaches to
giving semantics to models. We concentrate on two categories of models, models
expressed in a sequence diagram style and models expressed in a state machine
style, and two main categories of semantics, denotational and operational. Ma-
king a complete and exhaustive presentation of every existing approach is an
impossible task, and it has therefore been necessary to make a selection. With
respect to sequence diagrams, we focus on UML sequence diagrams and Message
Sequence Charts (MSC), and with respect to state machines, we focus on state-
charts, UML state machines and SDL. Furthermore, we have aimed at making
a representative selection of the approaches that exist.

In Sect. 4.4 we present and discuss approaches to giving semantics to sequence
diagrams and similar notations, and in Sect. 4.5 we do the same with respect to
state machines and similar notations. In Sect. 4.6 we evaluate and compare the
approaches using the evaluation criteria identified in Sect. 4.2.

4.4 Sequence Diagrams and Similar Notations

In this section we present different approaches to defining formal semantics to
models expressed in UML sequence diagrams and similar notations. This pre-
sentation cannot, however, be seen independently of the history of sequence dia-
grams. The various approaches of defining semantics have emerged at different
points in this history, and are clearly influenced by the state of the language(s)
at the time of their emergence.

Sequence diagrams is a graphical specification language defined in the Unified
Modeling Language (UML) 2.x5 standard [1]. Sequence diagrams as defined in
the UML 2.x standard are the last of a sequence of languages that have evolved
over the last 15 to 20 years. Both UML sequence diagrams and their predecessor
Message Sequence Charts (MSC) [2] are specification languages that have proved
themselves to be of great practical value in system development.

An early version called Time Sequence Diagrams was standardized in the
1980s (see [17, 18]). Better known are MSCs that were first standardized by
ITU in 1993 (see e.g. [19]). This standard is usually referred to as MSC-92,
and describes what is now called basic MSCs. This means that MSC-92 did
not have high-level constructs such as choice, but merely consisted of lifelines

5 The UML standard exists in versions 1.3, 1.4, 1.4.2, 1.5, 2.0 and 2.1.1. The for us
relevant changes occurred in the transition from version 1.5 to version 2.0. Hence,
in this paper we will operate with UML 1.x and UML 2.x with versions 1.4 [16] and
2.1.1 [1] as representatives.



84 M.S. Lund, A. Refsdal, and K. Stølen

and messages. MSC-92 had a lifeline-centric textual syntax6, and was given a
semantics formalized in process algebra.

In 1996, a new MSC standard was defined, called MSC-96 [20]. In this stan-
dard, high-level constructs and high-level MSCs were introduced, a kind of dia-
grams that show how control flows between basic MSCs. Further an event-centric
textual syntax7 and a new semantics were defined [21]. This semantics is also
a kind of process algebra, but holds substantial differences from the MSC-92
semantics. Finally, the MSC-96 standard was revised in 1999 and became MSC-
2000 [2], but kept the MSC-96 semantics. A further discussion on the MSC
semantics is found below.

The first versions of the Unified Modeling Language (UML 1.x) [16] included
a version of sequence diagrams similar to MSC-92, i.e., consisting of lifelines
and messages but no high-level constructs. An important difference, however,
was that the sequence diagrams of UML 1.x did not have the frame around the
diagram, which in MSC-92 allowed messages to and from the environment of the
specified system.

Sequence diagrams in UML 2.x may be seen as a successor of MSC-2000,
since many of the MSC language constructs have been incorporated in the UML
2.x variant of sequence diagrams. UML 2.x sequence diagrams are, however,
neither a subset nor a superset of MSC-2000; there are both similarities and
differences between the languages [22]. Most notably MSCs do not have any
notion of negative behavior.

The UML standard defines the semantics of sequence diagrams informally.
Most notably, this is a trace-based semantics:

Basic trace model: The semantics of an Interaction8 is given by a pair [P, I ]
where P is the set of valid traces and I is the set of invalid traces. P ∪ I need
not be the whole universe of traces.
A trace is a sequence of event occurrences denoted 〈e1, e2, ..., en〉. [1, pp. 479–
480]

The UML standard [1] defines four timing concepts: Duration observation, dura-
tion constraint, time observation and time constraint. The timing concepts of the
UML Testing Profile [23] are a combination of the timing concepts from the UML
standard and the timers from MSC. In the UML Profile for Schedulability, Per-
formance, and Time [24] timing is specified by timestamps on events. This UML

6 Lifelines represent the time-lines of communicating parts or components in a se-
quence diagram. In “MSC-terminology”, lifelines are called instances or instance
lines. A lifeline-centric syntax means that each lifeline is characterized by itself and
a diagram as a collection of lifelines.

7 In an event-centric syntax events, as opposed to lifelines, are the basic building
blocks of a diagram. The event-centric syntax of MSCs is more general than the
lifeline centric-syntax in that all diagrams expressed in the lifeline-centric syntax
can be expressed in the event-centric syntax, but not the other way around.

8 In the UML standard, Interaction is used as the common name for diagrams speci-
fying interaction by sending and receiving of messages. Sequence diagrams are then
one kind of Interaction [our note].



Semantics of UML Models for Dynamic Behavior 85

profile also has the notion of a timer, and a notion of a system clock that can pro-
duce interrupt events. The MSC standard defines three timing concepts: Timer,
relative time constraints or relative time delays, and absolute measure or timing.

In the following we present briefly different denotational and operational se-
mantics of sequence diagrams and similar notations. We start by presenting
denotational semantics, then denotational semantics with time, and then de-
notational semantics with probabilities. Then we present operational semantics
following the same structure.

4.4.1 Denotational Semantics

In [25] Katoen and Lambert define a denotational semantics for MSCs over sets
of partially ordered multisets. They define two translations, one for basic MSCs
and one for high-level MSCs. The former is defined over the instance oriented
textual syntax of MSCs and therefore have one rule for strict sequencing of events
on a single lifeline and one rule for co-region and parallel composition of lifelines.
These two levels seem to be unnecessary. If the rules for lifeline composition is
combined with the rules for sequential and parallel composition, the semantics
can be defined directly over the HMSC syntax and we then get a more general
approach. A similar denotational semantics for both basic MSCs and high-level
MSCs is given in [26].

In [27], Krüger defines a variant of Message Sequence Charts that is suppor-
ted by formal definitions of the semantics, as well as refinement relations. The
semantics is defined in terms of streams, which consist of a sequence of system
channel valuations and a sequence of state valuations. A system is represented
semantically by a set of streams, and the existence of more than one stream indi-
cates nondeterminism. The MSC variant proposed in [27] has some features that
go beyond standard MSC. For example, a trigger composition operator allows us
to specify that that the occurrence of an interaction sequence always causes the
occurrence of another, thus providing a way of specifying liveness properties.
In addition, [27] defines four different interpretations of MSCs: an existential
interpretation, an universal interpretation, an exact interpretation and a nega-
tive interpretation. Four different refinement relations are defined: binding of
references, which allows references to empty MSCs, property refinement, which
reduces the set of possible behaviors of the system, message refinement which
allows a single message to be replaced by a whole interaction sequence, and
structural refinement, which allows a single lifeline to be replaced by a set of
lifelines thus allowing decomposition.

The STAIRS semantics [28, 29] is a trace based formalization of sequence
diagrams based on an extension of the semantic model of the UML standard,
and hence distinguishes between positive, negative and inconclusive traces. But
instead of a single pair (p, n) of positive and negative traces the semantic model
of STAIRS is a set of pairs {(p1, n1), . . . , (pm, nm)}. Such a pair of sets of traces
(pi, ni) is referred to as an interaction obligation. The word “obligation” is used
in order to emphasize that an implementation of a specification is required to
fulfill every pair captured by the specification. This semantic model makes it



86 M.S. Lund, A. Refsdal, and K. Stølen

possible to define trace-set properties. Refinement is defined as refinement of
each interaction obligation, and refinement of interaction obligations is defined
as reducing the set of positive traces by making them negative and reducing the
set of inconclusive traces by making them positive or negative.

Störrle [30, 31, 32] defines a denotational trace based semantics for UML 2.x
sequence diagrams that is quite similar to the STAIRS semantics. Among the
notable differences are that Störrle does not treat choices as underspecification.
Further, Sörrle gives a different treatment of negative behavior where sequence
diagrams are not allowed to be inconsistent and the negative operator can indi-
rectly specify positive traces. Refinement is defined, but are more restricted as
there is no treatment of underspecification in the semantics.

Cengarle and Knapp [33] defines denotational semantics for UML 2.x sequence
diagrams. Their denotational semantics is trace based and similar to STAIRS
and the semantics of Störrle with respect to the positive parts of sequence dia-
grams. In difference from STAIRS and Störrle, they make a prefix closure of
negative traces, but does not allow inconsistent sequence diagrams. Their refi-
nement relation differs from STAIRS in that the set of inconclusive traces may
be increased, something which is a problem with respect to the monotonicity of
the composition operators.

In [34], Küster-Filipe gives an LSC inspired denotational semantics of UML
2.x sequence diagrams based on partially ordered sets. The partially ordered
sets of sequence diagrams is used to build event structures, and modal logic
constraints over these event structures are used to express negative behavior, as
well as must and may behavior.

4.4.2 Denotational Semantics with Time

In [35, 36], the semantics of basic MSCs given in [26] is presented in a timed
version. A timing function assigns time stamps to the events of a MSC, and
the MSC can be annotated with timing constraints in the form of minimum
and maximum time intervals between events. In addition, algorithms are given
for checking the realizability of MSCs and whether or not there exists a timing
function that is consistent with the timing constraints of an MSC.

In [37], Zheng et al. give a semantics with time for MSC-2000. The semantics is
based on labeled partially ordered sets and defines semantics for both basic MSCs,
high-level operators of MCSs and high-level MSCs. Time is represented by a func-
tion mapping each event in a diagram to a set of time values, giving the absolute
time interval in which the event should occur. Relative timing constraints are ex-
pressed by a function mapping pairs of events to intervals of time values. In [38],
horizontal and vertical refinement of their timed MSCs are defined.

Timed STAIRS is an extension to STAIRS defined in [39, 40]. In timed STAIRS
there is a distinction between syntactic and semantic events: in the syntax an event
is a triple of a kind (transmit, receive, or consumption), message and time-stamp
tag, while in the semantic events the time-stamp tags are mapped to timestamps
represented by real numbers. A requirement is placed on traces to ensure that time
increases monotonically in every trace. Time constraints are defined as Boolean



Semantics of UML Models for Dynamic Behavior 87

expressions over the time-stamp tags of the events of a diagram. If the mapping
of timestamps to time-stamp tags in a trace satisfies the constraint, the trace is
interpreted as positive, otherwise it is interpreted as negative.

4.4.3 Denotational Semantics with Probabilities

Performance Message Sequence Chart (PMSC) [41, 42] extends MSC with syn-
tactic constructs for expressing performance requirements. The aim is to integrate
performance characteristics, such as response time and throughput, in functional
specifications. Of particular interest is the new operator altprob for probabilistic
choice that is introduced in [42]. This operator allows exact probabilities to be as-
signed to the alternatives represented by its operands. This means that underspe-
cification with respect to probability cannot be captured by this operator. Apart
from mentioning instance decomposition, refinement is not discussed, and no defi-
nition is given of what it means for a system to comply with a PMSC specification.
The semantics of PMSC is explained at a purely intuitive level.

Probabilistic STAIRS (pSTAIRS) [43, 44, 45] generalizes timed STAIRS in or-
der to allow probabilistic requirements, including soft real-time requirements, to
be captured. Sets of acceptable probabilities, rather than a single probability, can
be assigned to alternatives. Hence, it is possible to express requirements such as
“the probability of receiving a reply within 5 seconds after sending a request should
be at least 0.9” or, for a machine simulating a coin toss, “the probability of get-
ting a heads outcome should be between 0.4 and 0.6”. Semantically, probabilis-
tic STAIRS extends the semantic model of timed STAIRS by assigning probabi-
lity sets to each interaction obligation, thus yielding so-called p-obligations. Re-
finement is defined in a similar way as for timed STAIRS, with the additional
constraint that the probability set of the refined p-obligation must be a subset
of the original p-obligation, thus narrowing the range of acceptable probabilities.

4.4.4 Operational Semantics

In 1995 a formal algebraic semantics for MSC-92 was standardized by ITU
[46, 47]. MSC-92 has a lifeline-centric syntax and its semantics is based on cha-
racterizing each lifeline as a sequence (total order) of events. These sequences
are composed in parallel and a set of algebraic rules transforms the parallel
composition into a structure of (strict) sequential composition and choice. The
causality of messages is obtained by a special function that removes from the
structure all paths that violate the invariant. In a way this semantics is not a
proper operational semantics since a diagram first has to be transformed into
the event structure before runs can be obtained. This transformation replaces
parallel composition with choice and hence creates an explosion in the size of
the representation of the diagram. In addition, the lifeline-centric syntax is not
suitable for defining nested high-level constructs. In [48], similar semantics for
UML 1.x sequence diagrams is given.

MSC-96 got a standardized process algebra semantics in 1998 [21, 49, 50]. This
semantics is event-centric andhas semantic operators for all the syntactic operators



88 M.S. Lund, A. Refsdal, and K. Stølen

in MSC-96. Further, these operators are “generalized” to preserve the causality of
messages by coding information about messages into the operators in the transla-
tion from syntactical diagrams to semantic expressions. Runs are characterized by
inference rules over the semantic operators.Compared toUMLsemantics, themost
notable thing about this semantics is that it has no notion of negative behavior,
and therefore also makes no distinction between negative behavior and inconclu-
sive behavior (behavior that is neither positive nor negative). This is no surprise
since MSC does not have the negative operator of UML 2.x. The only available
meta-level is a flat transition graph, and this does not give sufficient strength to
extend the semantics with negative behavior. Nor is it possible to define trace-set
properties over this transition graph. The semantics has no explicit communica-
tion medium; the communication model is “hard-coded” in the semantics by the
“generalized operators” and does not allow for variation. Even though MSC has
timing concepts, these are not given proper treatment in the semantics.

Another process algebra semantics for MSC is presented in [51]. This seman-
tics may in some respects be seen as more general than both the MSC-92 and
the MSC-96 semantics. A simple “core semantics” for MSCs is defined and this
semantics is then inserted into an environment definition. Varying the definition
of the environment allows for semantic variability and extendibility, e.g., with
respect to the communication model. However, the semantics is heavily based
on synchronization of lifelines on the entry of referenced diagrams and combined
fragments and diverges in this respect from the intended semantics of MSCs
and UML sequence diagrams. Further, the same strategy as for the MSC-92
semantics is applied; interleaving is defined by means of choice, and the mes-
sage invariants obtained by removing deadlocks. This results in an unnecessary
amount of computation, especially in the cases where we do not want to produce
all traces but rather a selection of the traces that a diagram defines.

Realizability of MSCs is the focus of both [36, 52] and [53]. They define syn-
thesis of MSC to concurrent automata and parallel composition of labeled tran-
sition systems (LTS), respectively. (Each lifeline is represented as an automaton
or LTS; the lifelines are then composed in parallel.) Further they define high-
level MSCs as graphs where the nodes are basic MSCs. In addition, [53] defines
both syntax and semantics for negative behavior. In both approaches the transla-
tion of high-level MSCs to concurrent automata/LTSs removes the semi-global
nature of choices in a specification, and the high-level MSC graphs are non-
hierarchical, disallowing nesting of high-level operators. In [53] communication
is synchronous.

Various attempts at defining Petri-net semantics for MSCs have been made
[54, 55, 56, 57]. In [54, 56] only basic MSCs are considered. In [57], high-level
MSCs are defined as graphs where each node is a basic MSC. As with the above
mentioned semantics, it is then possible to express choices and loops, but the
approach does not allow for nesting of high-level operators. In [55], a Petri-net
translation of the choice operator is sketched, but no loop defined. In [58] a
Petri-net semantics for UML 1.x sequence diagrams is presented, but as with
the Petri-net semantics of basic MSCs it has major limitations.



Semantics of UML Models for Dynamic Behavior 89

Jonsson and Padilla [59] present a semantics for MSC which is based on syn-
tactic expansion and projection of diagram fragments during execution. Each
lifeline is represented by a thread of labels where the labels refer to events or
diagram fragments. The threads are executed in parallel and when a label refer-
ring to a fragment is reached the fragment is projected and expanded into the
threads. Expansions may happen at arbitrary points since there are no rules in
the semantics itself for when to expand. This creates a need for execution stra-
tegies, and the approach may be seen as having an informal meta-level where
ad hoc strategies are described. However, if completeness is to be ensured, or
if the semantics is to be extended with negative behavior or trace-set proper-
ties, this meta-level must be formalized. The semantics requires explicit naming
of all diagram fragments and this yields an unnecessary complicated syntax. It
does not have an explicit communication medium; the communication model is
“hard-coded” into the semantics and does not allow for variation.

In [60, 61] an operational semantics for UML 2.x sequence diagram is given.
The semantics is defined as the combination of two transition systems, which are
referred to as an execution system and a projection system. The projection system
is used for finding enabled events at each stage of the execution and is defined
recursively. These two systems work together in such a way that for each step in
the execution, the execution system updates the projection system by passing
on the current state of the communication medium, and the projection system
updates the execution system by selecting the event to execute and returning
the state of the diagram after the execution of the event. The execution system
can be configured with different communication models, and the semantics also
provides a formal meta-level for specifying execution strategies and for handling
of negative behavior and trace-set properties. The semantics is proved to be
sound and complete with respect to the denotational semantics of STAIRS (see
above).

In [62, 63] an operational semantics for UML 2.x sequence diagrams that is
equivalent to the denotational semantics defined in [33] (see above) is given.
This operational semantics has some similarities to the operational semantics
of [60, 61]; for every execution step an event is produced and at the same time
the syntactical representation of the diagram is reduced by the removal of the
event produced. Contrary to [60, 61], their semantics treats sequence diagrams
as complete specifications (with no inconclusive behavior). The rules are defined
so that a given diagram produces a set of positive and negative traces that
together exhaust the trace universe. The negative operator is replaced by a
“not” operator. This operator is defined so that the sets of positive and negative
traces are swapped, with the result that specifying some behavior as negative
means also specifying the complement of this behavior as positive. A variant of
the (positive part) of the operational semantics where each lifeline is executed
separately, and an extension with channels, are given in [63].

In [64], Cavarra and Küster-Filipe present an operational semantics for UML
2.x sequence diagrams inspired by Live Sequence Charts (LSC) (see below). The
semantics is formalized in pseudo-code that works on diagrams represented as



90 M.S. Lund, A. Refsdal, and K. Stølen

locations in the diagram, but no translation from diagrams to this representa-
tion is provided. The arguments of choices have guards and there is nothing to
prevent the guards of more arguments in a choice to evaluate to true. In this
case the uppermost operand will be chosen, which means that the choices es-
sentially are treated as nested if-then-else statements and may not be used for
underspecification. Each lifeline is executed separately which means that syn-
chronization at the entry of choices is necessary to ensure that all lifelines choose
the same operand. They also make the same assumption about negative behavior
as in LSCs, that if a negative fragment is executed, then execution aborts.

Grosu and Smolka [65] provide a semantics for UML 2.x sequence diagrams
based on translating the diagrams to Büchi automata. The approach is based on
composing simple sequence diagrams (no high-level operators) in high-level se-
quence diagrams (interaction overview diagrams), where a simple diagram may
be a positive or a negative fragment of the high-level diagram it belongs to.
Positive behavior is interpreted as liveness properties and negative behavior as
safety properties. Hence, for a high-level diagram two Büchi automata are de-
rived; a liveness automaton characterizing the positive behavior of the diagram
and a safety automaton characterizing the negative behavior. The diagrams are
composed by strict sequencing rather than weak sequencing, and hence has im-
plicit synchronization of lifelines when entering or leaving a simple diagram.
Refinement is defined as language inclusion.

Live Sequence Charts (LSC) [3, 66, 67] is a variant of MSC where diagrams
may be tagged as universal or existential, and parts of diagrams as hot or cold.
In addition, a diagram may have a triggering pre-chart. The semantics of LSC
characterizes the execution of diagrams. It also evaluates the conditions imposed
on diagrams by designating them as universal or existential, or by marking parts
of diagrams as hot or cold. The semantics complies with neither the MSC nor the
UML standard. Most importantly it requires synchronization between lifelines
at every entry point of diagram fragments, e.g. when resolving a choice.

Harel and Maoz [68] use LSC semantics to define negative behavior of UML 2.x
sequence diagrams. The operators are defined using already existing constructs
of LSCs, and hence no changes or additions to the LSC semantics are needed in
their approach.

In Triggered Message Sequence Charts (TMSC) [69, 70], an initial part of a
diagram can be designated as a trigger diagram, with the interpretation that
if the behavior described by the trigger diagram takes place, then the behavior
described by the rest of the diagram must subsequently take place. Unlike the
pre-charts of LSC, however, the trigger condition applies locally to each lifeline.
This means that, for any given lifeline, if the events on that lifeline described by
the trigger diagram take place, then the following events on that lifeline must
subsequently take place. As the fulfillment of the trigger condition is determined
locally on each lifeline, there is no need for synchronization between the lifelines.
A refinement relation is defined, with the intuitive interpretation that a speci-
fication S1 is refined by a specification S2 if S2 is more deterministic than S1.
TMSC contains two operators for choice. A delayed choice must be preserved in



Semantics of UML Models for Dynamic Behavior 91

a refinement step. An internal choice can be resolved at any point (including at
design time). In addition, an internal choice may be refined by a delayed choice.

4.4.5 Operational Semantics with Time

In [51], Letichevsky et al. claim they also have an extension to the semantics
where timing concepts such as time intervals and timing of events are defined.

The operational semantics of [60, 61] has in [60] an extension with data, va-
riables and time. Each lifeline has a set of local variables and a data state that
assigns values to these variables. In order to model time a special variable now
is introduced. Because the approach only has local variables, this variable is
placed in the data state of every lifeline in a diagram. It can, however, be consi-
dered a global variable in the sense that all the local now variables are updated
simultaneously and with equal increments, i.e. that the time of all lifelines are
synchronized. Except for increments by a special tick rule, the now variables
are read only, something that is ensured by syntactic constraints.

In [67], a time extension to LSCs is presented where a clock variable Time is
added to the formalism. Time is then treated as data and time constraints can
be expressed by means of ordinary variables.

Kosiuczenko and Wirsing [71] make a formalization of MSC-96 in a timed
version of the term rewriting language Maude. Every lifeline in a diagram is
translated into an object specified in Maude, and the behaviors of these objects
are specified by the means of states and transition rules. This way of reducing
diagrams to sets of communicating objects has the effect that all choices are
made locally in the objects and the choice operator looses its semi-global nature.
Hence, this formalization does not capture the intended understanding of the
choice operator. With respect to time, their semantics only deals with timers,
and their formalization makes restrictions on the MSC semantics.

4.4.6 Operational Semantics with Probabilities

We are not aware of any operational semantics with probabilities for sequence
diagrams or similar notations.

4.5 State Machines and Similar Notations

In this section we present some of the approaches that have been taken for
assigning formal semantics to models expressed in UML state machines and
similar languages. UML state machines represent one of many variations that
have emerged since Harel introduced the Statechart language in 1987 [4]. Over
the years very much work has been dedicated to providing a satisfactory formal
semantics. An extensive overview is beyond the scope of this article; our aim
is to illustrate the variety of approaches that have been taken. An alternative
overview from a different angle can be found in [72].



92 M.S. Lund, A. Refsdal, and K. Stølen

4.5.1 Denotational Semantics

Broy et al. [73, 74, 75] build a mathematical system model for UML in layers.
Each layer builds an algebra consisting of a universe of elements with accom-
panying functions and laws for the functions. The third part, presented in [75],
includes the “state machine part”, which is given in terms of state transition
systems. A state transition system consists of a state space (a set of states) and
a state transition function. The theory of state transition systems is based on
the theory of streams of FOCUS [76] for the I/O behavior, and thus inherits re-
finement from there. State transition systems can describe not only the behavior
of a single object, but also a collaborating group of objects.

A set theoretic approach to defining a semantics is taken in [77]; object states,
events, guards, and run-to-completion processing is described in set theoretic
terms. The aim is to provide a compositional semantics that allows models to
be subject to hierarchical and modular approaches to verification and testing.

4.5.2 Denotational Semantics with Time

In [75], the state transition systems are generalized into timed transition sys-
tems to account for time. The approach assumes a discrete global time. In each
step/transition the system is provided with a finite set of input events and pro-
duces a finite set of output events; this takes a fixed amount of time correspon-
ding to a clock tick.

Rossi et al. [78] provide a formalization of (fundamental aspects of) UML
state machines in terms of a temporal logic over discrete time called LNint-e.9

Time is represented by a discrete, linear and infinite set with a total ordering.
LNint-e allows inclusion of interval expressions, and time can be treated both
absolutely and relatively. The temporal primitives from which expressions can
be built are instants, intervals and dates. A state machine diagram is represen-
ted by set of predicates, and the formalization can be generated automatically.
States are formalized by means of expressions that can be affirmed over intervals
(“hereditary interval expressions”).

Hinkel, Holz and Stølen [79, 80] give a semantics for SDL specifications (whose
behavioral descriptions are similar to UML state machines) based on streams and
stream processing functions within the framework of FOCUS [76]. This allows
properties of SDL specifications to be proved using techniques of classical higher
order logic and of domain theory. Time is represented by a global clock which
increases time and is accessible to all processes. Time is an orthogonal concept
to system behavior, and time proceeds independently from the behavior. Timers
set by processes will expire after a finite duration of time and are put in the

9 Note that we have chosen to include [78] among the denotational semantics because
the translation from a state machine diagram to a set of logical formulae can be
viewed as a translation into a well-known domain. As there are very few approaches
that give an axiomatic semantics for UML sequence diagrams and state machines,
we have chosen not to have a separate category for axiomatic semantics.



Semantics of UML Models for Dynamic Behavior 93

input queue of the process. The refinement relations provided by FOCUS can
be used also for the approach of [79, 80].

4.5.3 Denotational Semantics with Probabilities

We are not aware of any approaches that assigns a formal denotational semantics
to state machines that also include probabilities.

4.5.4 Operational Semantics

In [4], Harel provides a brief discussion of how a formal semantics for statecharts
could be provided, without giving definitions. The semantics is built around
a function that provides the set of next possible configurations from a current
configuration together with a set of conditions and a set of external simultaneous
events. The set of possible next configurations represent nondeterminism. An
updated and more thorough presentation of the semantics is provided in [81],
which explains the executable semantics of the STATEMATE system [82].

One approach to assigning formal semantics to UML state machines is to use
abstract state machines [83]. Following the description of [84], abstract state ma-
chines are transition systems whose states are multi-sorted first-order structures,
i.e. sets with relations and functions. Relations can be considered as characte-
ristic Boolean-valued functions. The transition relation is specified by rules that
describe the modification of the functions from one state to the next. These
update rules are of the form “if Condition then Updates”, where Updates is a
set of function updates (assigning new function values for arguments) which are
simultaneously executed when Condition is true.

An example of an approach that uses abstract state machines is [85], which
employs multi-agent abstract state machines to model the dynamic semantics
of UML state machines. Their model is intended to define rigorously the UML
event handling scheme so that semantic variation points become explicit, while
reflecting the original structure of UML state machines. Furthermore, object
interaction is formalized by combining control and data flow. This work is further
extended by the authors in [86] to cover concurrent states, while [84] surveys
their previous work in order to further discuss semantic variation points and
unclarities of UML state machines from a formal point of view.

In [87], Jürjens extends the semantics given in [85, 86] by modeling actions,
internal activities, and their operations and parameters explicitly, as well as
providing message passing between different diagrams. This constitutes a further
step toward formal modeling of complete UML specifications and the goal of
executable UML specifications. A thorough presentation of Jürjens’ work on
formalization of UML is given in [88], which provides a formal semantics for
UML state machines (as well as other UML languages such as sequence diagrams
and static structure diagrams) in terms of so-called UML Machines and UML
Machine Systems. UML Machines are inspired by abstract state machines; they
are transition systems whose states are algebraic structures. In addition, UML
Machines have built-in communication mechanisms similar to the corresponding



94 M.S. Lund, A. Refsdal, and K. Stølen

mechanisms in UML. UML Machines interact by exchanging messages which
are dispatched from (or received in) multi-set buffers called output queues (or
input queues). Based on UML Machines, [88] defines refinement relations, as well
as security properties such as integrity and authenticity, and provides proofs of
preservation of security properties under refinement.

van der Beeck [89] starts with a precise textual syntax definition for UML
state machines. The terms of this textual syntax is designed to closely resemble
the intuitive notion of state machines. From the textual syntax a structured ope-
rational semantics is developed in two phases. First an auxiliary semantic which
only deals with processing single input events is defined. Then this auxiliary
semantics is used to define a semantics that also handles processing of sequences
of input events. Unlike many other approaches, [89] supports the history mecha-
nism of UML state machines, as well as entry and exit actions.

4.5.5 Operational Semantics with Time

In [81] Harel and Naamad provide two models of time: one synchronous and
one asynchronous. For the synchronous model it is assumed that the system
executes a single step each time unit as a reaction to the external changes that
have occurred in the single time unit since the completion of the previous step.
For the asynchronous model it is assumed that the system reacts whenever an
external change occurs. Several external changes may occur simultaneously, and
several steps may take place within a single point in time.

In [90], timed UML state machines are compiled into timed UPPAAL au-
tomata [91], which are timed automata as originally defined by Alur and Dill
[92], extended with primitives for synchronization. The passage of time is repre-
sented by increasing the value of a finite number of real-valued clocks by the
same amount. [90] extends the UML notation (after(t)) by allowing clocks to be
explicitly declared in class diagrams. These clocks can be tested in transition
guards and reset as the effect of a transition. Furthermore, clock invariants may
be associated with states to model timeouts. Even though a formal semantics as
such is not provided in [90], the translation of timed UML state machines has
been implemented in a prototype tool called HUGO/RT. The resulting timed
automata can then be analyzed by the UPPAAL model checker.

Building on ideas from timed process calculi, [93] suggests an approach to for-
malizing the Statechart language [4] semantics as flattened transition systems.
Transition relations are defined via structured operational rules. The work is mo-
tivated by the desire to achieve a semantics that is compositional (in the sense
that the semantics of a statechart can be determined from the semantics of its
components), while obeying causality and synchrony. In this context, causality
means the following: A statechart may respond to an event by engaging in an
enabled transition, thus performing a micro step. This transition may generate
new events which in turn may trigger additional transitions. Synchrony means
that one execution step (a macro step) is complete as soon as this chain reaction
comes to a halt. The semantics proposed in [93] represents macro steps as se-
quences of micro steps which begin and end with explicit global clock ticks. The



Semantics of UML Models for Dynamic Behavior 95

flat labeled transition systems thus have two kinds of transitions: those repre-
senting the execution of a statechart transition, and those representing global
clock ticks. Clock transitions are only allowed if no additional action transitions
can be executed.

4.5.6 Operational Semantics with Probabilities

Jansen et al. [94, 95] define StoCharts as an extension of UML state machines
to deal with quality of service (QoS) aspects. Probability is handled by allowing
state transitions to select probabilistically out of different effects. In addition,
the “after” operator is given a stochastic interpretation allowing the time delay
to be sampled from an arbitrary probability distribution. A formal semantics
is provided in the form of a mapping to Stochastic Input/Output Automata
(IOSA), which is an automata model based on timed, stochastic and probabilistic
(I/O-)automata extending the UML state machine semantics of [96].

Motivated by the need for quantitative dependability and performance ana-
lysis of UML behavioral models of embedded systems, [97] presents patterns
for translating UML state machines with timing and stochastic information and
classification of model elements (such as fault states) into Stochastic Rewards
Nets (SRN). SRNs are Petri-nets that are generalized to handle rewards (various
measures) and by assigning guards and distributions of the firing time to tran-
sitions. The SRN resulting from the translation gives a precise mathematical
model that can be analyzed by sophisticated tools. Standard UML mechanisms
are employed to achieve the required expressiveness for the UML state machines;
timing and stochastic information in captured by tagged values, while classifica-
tion of model elements is achieved by stereotyped states and events.

4.6 Evaluation and Comparison

The evaluation of the semantic approaches surveyed in Sects. 4.4 and 4.5 is
presented in Table 4.2 and Table 4.3, respectively. In these tables we indicate with
check marks whether the properties, given as evaluation criteria in Sect. 4.2, are
fulfilled. It should be noted that we have been somewhat liberal in the evaluation,
and the evaluation is to some degree based on the claims of the authors of the
evaluated papers. With respect to refinement, we have not assessed whether or
not the provided definitions of refinement correspond to our view of refinement,
but checked the refinement box if any refinement relation or similar notion is
defined. In the following we give further comments on the two tables.

In Table 4.2, we see that most of the approaches are evaluated to support
underspecification. The general rule is that an approach providing an explicit
mechanism for specifying nondeterministic choice supports underspecification,
unless such choices are interpreted as must behavior, as in [30, 32]. The ap-
proaches evaluated as supporting trace set properties are the approaches that
explicitly distinguish between underspecification and inherent nondeterminism,
as for example [28], the approaches distinguishing between universal and exis-
tential behavior, as for example [3, 66, 67, 68], and the approaches distinguishing



96 M.S. Lund, A. Refsdal, and K. Stølen

Table 4.2. Evaluation of semantics for sequence diagrams and similar notations

D
en

o
ta

ti
o
n
a
l
se

m
a
n
ti
cs

?

O
p
er

a
ti
o
n
a
l
se

m
a
n
ti
cs

?

U
n
d
er

sp
ec

ifi
ca

ti
o
n
?

T
ra

ce
se

t
p
ro

p
er

ti
es

?

In
co

m
p
le

te
m

o
d
el

s?

R
efi

n
em

en
t?

R
ea

l-
ti

m
e?

P
ro

b
a
b
il
it
ie

s?

Katoen, Lambert [25]
√ √

Krüger [27]
√ √ √ √ √

Haugen, Husa, Runde, Seehusen, Solhaug,
Stølen (STAIRS) [28, 29]

√ √ √ √ √

Störrle [30, 31, 32]
√ √ √ √ √

Cengarle, Knapp [33]
√ √ √

Küster-Filipe [34]
√ √ √

Alur, Etassami, Holzmann, Peled, Yanna-
kakis [26, 35, 36]

√ √ √ √

Zheng, Khendek, Hélouët, Parraux [37, 38]
√ √ √ √

Haugen, Husa, Runde, Stølen (Timed
STAIRS) [39, 40]

√ √ √ √ √ √

Faltin, Lambert, Mitchele-Thiel, Slomka
(PMSC) [42, 41]

√ √ √ √ √

Refsdal, Husa, Runde, Stølen (pSTAIRS)
[43, 44, 45]

√ √ √ √ √ √ √

Mauw, Reniers (MSC-92) [46, 47]
√ √

Mauw, Reniers (MSC-96) [21, 49, 50]
√ √ √

Letichevsky, Kapitonova, Kotlyarov, Vol-
kov, Letichevsky Jr., Weigert [51]

√ √ √

Alur, Etassami, Yannakakis [36, 52]
√ √

Uchitel, Kramer, Magee [53]
√ √ √

Graubmann et al. [54, 55, 56, 57]
√

Jonsson, Padilla [59]
√ √

Lund, Stølen [60, 61]
√ √ √ √ √ √

Cengarle, Knapp, Mühlberger [62, 63]
√ √

Cavarra, Küster-Filipe [64]
√ √ √

Grosu, Smolka [65]
√ √ √ √

Harel, Damm, Maoz, Marelly, Thiagarajan
(LSC) [3, 66, 67, 68]

√ √ √ √ √

Sengupta, Cleveland (TMSC) [69, 70]
√ √ √ √ √

Kosiuczenko, Wirsing [71]
√ √ √



Semantics of UML Models for Dynamic Behavior 97

Table 4.3. Evaluation of semantics for state machines and similar notations

D
en

o
ta

ti
o
n
a
l
se

m
a
n
ti

cs
?

O
p
er

a
ti

o
n
a
l
se

m
a
n
ti

cs
?

U
n
d
er

sp
ec

ifi
ca

ti
o
n
?

T
ra

ce
se

t
p
ro

p
er

ti
es

?

In
co

m
p
le

te
m

o
d
el

s?

R
efi

n
em

en
t?

R
ea

l-
ti

m
e?

P
ro

b
a
b
il
it

ie
s?

Broy, Cengarle, Rumpe [75]
√ √ √ √

Simons [77]
√ √

Rossi, Enciso, de Guzmán [78]
√ √

Hinkel, Holz, Stølen [79, 80]
√ √ √ √

Harel, Naamad [4, 81]
√ √ √

Börger, Cavarra, Riccobene [85, 86]
√ √

Jürjens [87, 88]
√ √ √ √

von der Beeck [89]
√ √

Knapp, Merz, Rauh [90]
√ √ √

Lüttgen, von der Beeck, Cleaveland [93]
√ √ √

Jansen, Hermanns, Katoen [94, 95]
√ √ √ √ √

Huszerl, Kosmidis, Cin, Majzik, Pataricza
[97]

√ √ √ √ √

between must and may behavior, as for example [34]. The final evaluation cri-
teria we want to comment upon is the support for incomplete models. This is
difficult to assess, as we can always choose to interpret a sequence diagram as
an incomplete model. The evaluation was therefore based on the approaches’
treatment of negative behavior, their support for existential behavior, and their
definitions of refinement.

A few comments to Table 4.3 are also needed. First, we notice that none of
the approaches capture incomplete models. The reason is that state machines,
unlike sequence diagrams, focus on describing a single component rather than
an interaction scenario. All state machine variants we are aware of describe only
the behavior that the component may exhibit; behavior not explicitly descri-
bed is negative in the sense that it should not occur. There is, therefore, no
explicit operator for expressing negative behavior, and all behavior is either po-
sitive or negative – there is no inconclusive behavior. Second, most approaches
have received a check mark under “Underspecification”, but only a few under
“Trace set properties”. The reason is that, for approaches with only one kind of
transition, we have assumed that nondeterministic choices between transitions
represent underspecification, rather than explicit nondeterminism. This decision



98 M.S. Lund, A. Refsdal, and K. Stølen

was made because a fairly standard notion of refinement is trace inclusion – the
requirement that the traces of the refined specification is a subset of the traces of
the original specification. Third, all approaches with probabilities have received
a check mark in the “Trace set properties” column, as all alternatives with a
certain (non-zero) probability are necessarily represented in a correct implemen-
tation. In this sense, probabilistic choices can be viewed as a kind of inherent
nondeterminism, which means that trace set properties can be captured.

4.7 Summary and Conclusions

In this paper we have defined a set of evaluation criteria for semantics of models
for embedded systems. We claim that our criteria represent an important set of
the properties that semantics of models for embedded systems should support.

These evaluation criteria have been applied in an evaluation of formal se-
mantics for models expressed in UML sequence diagrams, state machines, and
similar notations. In the paper we have presented and evaluated in all more
that 30 approaches, divided into four main categories: denotational semantics
of sequence diagrams, operational semantics of sequence diagrams, denotational
semantics of state machines and operational semantics of state machines. Our
selection of approaches to evaluate is not exhaustive, but we believe that it gives
a representative picture of the various approaches available.

As the evaluation reveals there is no lack of approaches to formal semantics for
UML sequence diagrams and state machines, and many of these have desirable
properties. We do not proclaim a winner, but we have established that formal
semantics of relevant modeling languages are readily available for the developers
of embedded systems. We have not evaluated to what degree the approaches
presented in this paper are supported by suitable tools, nor to what degree
they have been put to practical application. Still, judging from our evaluation,
there should be a large potential for applying UML models supported by formal
semantics in the development of embedded systems. It is up to developers to
choose a suitable approach based on the nature of the system to be developed,
and the background and experience of the development team.

Acknowledgements

The work on which this paper reports has partly been funded by the Research
Council of Norway through the projects SARDAS (15295/431) and ENFORCE
(164382/V30), and partly by the European Commission through the MODEL-
PLEX project (Contract no. 034081) under the IST Sixth FrameworkProgramme.

References

[1] Object Management Group: Unified Modeling Language: Superstructure, version
2.1.1 (non-change bar). OMG Document: formal/2007-02-05 (2005)

[2] International Telecommunication Union: Message Sequence Chart (MSC), ITU-T
Recommendation Z.120 (1999)



Semantics of UML Models for Dynamic Behavior 99

[3] Damm, W., Harel, D.: LSCs: Breathing life into Message Sequence Charts. Formal
Methods in System Design 19, 45–80 (2001)

[4] Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

[5] International Telecommunication Union: Specification and description language
(SDL), ITU-T Recommendation Z.100 (2000)

[6] Labinaz, G., Bayoumi, M.M., Rudie, K.: A survey of modeling and control of
hybrid systems. Annual Reviews of Control 21, 79–92 (1997)

[7] Giese, H., Henkler, S.: A survey of approaches for the visual model-driven develop-
ment of next generation software-intensive systems. Journal of Visual Languages
and Computing 17(6), 528–550 (2006)

[8] McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: Proceedings of the IEEE Symposium on Research in
Security and Privacy, pp. 79–93. IEEE Computer Society, Los Alamitos (1994)

[9] Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Let-
ters 21(4), 181–185 (1985)

[10] Schneider, F.B.: Enforceable security policies. ACM Transactions on Information
System Security 3(1), 30–50 (2000)

[11] Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of “semantics”?
Computer 37(10), 64–72 (2004)

[12] Prinz, A.: Formal semantics of specification languages. Telektronikk (4), 146–155
(2000)

[13] Fecher, H., Schönborn, J., Kyas, M., de Roever, W.P.: 29 new unclarities in the
semantics of UML 2.0 state machines. In: Lau, K.-K., Banach, R. (eds.) ICFEM
2005. LNCS, vol. 3785, pp. 52–65. Springer, Heidelberg (2005)

[14] Schmidt, D.A.: Denotational semantics. A methodology for language development.
William C. Brown (1988)

[15] Hoare, C.A.R., Jifeng, H.: Unifying theories of programming. Prentice-Hall, En-
glewood Cliffs (1998)

[16] Object Management Group: Unified Modeling Language Specification, version 1.4.
OMG Document: formal/2001-09-67 (2001)

[17] Facchi, C.: Formal semantics of Time Sequence Diagrams. Technical report TUM-
I9540, Technische Universität München (1995)

[18] International Telecommunication Union: Information technology – Open Systems
Interconnection – Basic reference model: Conventions for the definition of OSI
services, ITU-T Recommendation X.210 (1993)

[19] Bræk, R., Gorman, J., Haugen, Ø., Møller-Pedersen, B., Melby, G., Sanders, R.,
St̊alhane, T.: TIMe: The Integrated Method. Electronic Textbook v4.0. SINTEF
(1999)

[20] International Telecommunication Union: Message Sequence Chart (MSC), ITU-T
Recommendation Z.120 (1996)

[21] International Telecommunication Union: Message Sequence Chart (MSC), ITU-T
Recommendation Z.120, Annex B: Formal semantics of Message Sequence Charts
(1998)

[22] Haugen, Ø.: Comparing UML 2.0 Interactions and MSC-2000. In: Amyot, D.,
Williams, A.W. (eds.) SAM 2004. LNCS, vol. 3319, pp. 65–79. Springer, Heidel-
berg (2005)

[23] Object Management Group: UML Testing Profile, version 1.0. OMG Document:
formal/2005-07-07 (2005)

[24] Object Management Group: UML Profile for Schedulability, Performance, and
Time Specification, version 1.1. OMG Document: formal/2005-01-02 (2005)



100 M.S. Lund, A. Refsdal, and K. Stølen

[25] Katoen, J.P., Lambert, L.: Pomsets for Message Sequence Charts. In: Formale
Beschreibungstechniken für Verteilte Systeme, pp. 197–208. Shaker (1998)

[26] Alur, J., Yannakakis, M.: Model checking of Message Sequence Charts. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 98–113. Springer,
Heidelberg (1999)

[27] Krüger, I.H.: Distributed system design with Message Sequence Charts. PhD the-
sis, Technische Universität München (2000)

[28] Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: STAIRS towards formal design
with sequence diagrams. Software and Systems Modeling 4(4), 355–367 (2005)

[29] Seehusen, F., Solhaug, B., Stølen, K.: Adherence preserving refinement of trace-set
properties in STAIRS: Exemplified for information flow properties and policies.
Software and Systems Modeling 8(1), 45–65 (2009)

[30] Störrle, H.: Assert, negate and refinement in UML 2 interactions. In: 2nd Interna-
tional Workshop on Critical Systems Development with UML (CSD-UML 2003),
Technische Universität München, pp. 79–93 (2003)

[31] Störrle, H.: Semantics of interaction in UML 2.0. In: IEEE Symposium on Human
Centric Computing Languages and Environments (HCC 2003), pp. 129–136. IEEE
Computer Society, Los Alamitos (2003)

[32] Störrle, H.: Trace semantics of interactions in UML 2.0. Technical report TR 0403,
Institut für Informatik, der Ludwig-Maximilians-Universität München (2004)

[33] Cengarle, M.V., Knapp, A.: UML 2.0 interactions: Semantics and refinement. In:
3rd International Workshop on Critical Systems Development with UML (CSD-
UML 2004), Technische Universität München, pp. 85–99 (2004)

[34] Küster-Filipe, J.: Modelling concurrent interactions. In: Rattray, C., Maharaj,
S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 304–318. Springer,
Heidelberg (2004)

[35] Alur, R., Holzmann, G.J., Peled, D.: An analyzer for Message Sequence Charts.
In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 35–48.
Springer, Heidelberg (1996)

[36] Alur, R., Etessami, K., Yannakakis, M.: Inference of Message Sequence Charts.
IEEE Transactions on Software Engineering 29(7), 623–633 (2003)

[37] Zheng, T., Khendek, F., Hélouët, L.: A semantics for timed MSC. Electronic Notes
in Theoretical Computer Science 65(7), 85–99 (2002)

[38] Zheng, T., Khendek, F., Parreaux, B.: Refining timed MSCs. In: Reed, R., Reed,
J. (eds.) SDL 2003. LNCS, vol. 2708, pp. 234–250. Springer, Heidelberg (2003)

[39] Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: Why timed sequence dia-
grams require three-event semantics. In: Leue, S., Systä, T.J. (eds.) Scenarios:
Models, Transformations and Tools. LNCS, vol. 3466, pp. 1–25. Springer, Heidel-
berg (2005)

[40] Runde, R.K.: STAIRS - Understanding and developing specifications expressed
as UML interaction diagrams. PhD thesis, Faculty of Mathematics and Natural
Sciences, University of Oslo (2007)

[41] Faltin, N., Lambert, L., Mitschele-Thiel, A., Slomka, F.: An annotational exten-
sion of Message Sequence Charts to support performance engineering. In: 8th
International SDL Forum: Time for Testing, SDL, MSC and Trends (SDL 1997),
pp. 307–322. Elsevier, Amsterdam (1997)

[42] Lambert, L.: PMSC for performance evaluation. In: 1st Workshop on Performance
and Time in SDL/MSC, pp. 70–80 (1998)

[43] Refsdal, A., Husa, K.E., Stølen, K.: Specification and refinement of soft real-time
requirements using sequence diagrams. In: Pettersson, P., Yi, W. (eds.) FOR-
MATS 2005. LNCS, vol. 3829, pp. 32–48. Springer, Heidelberg (2005)



Semantics of UML Models for Dynamic Behavior 101

[44] Refsdal, A., Runde, R.K., Stølen, K.: Underspecification, inherent nondetermi-
nism and probability in sequence diagrams. In: Gorrieri, R., Wehrheim, H. (eds.)
FMOODS 2006. LNCS, vol. 4037, pp. 138–155. Springer, Heidelberg (2006)

[45] Refsdal, A.: Specifying computer systems with probabilistic sequence diagrams.
PhD thesis, Faculty of Mathematics and Natural Sciences, University of Oslo
(2008)

[46] Mauw, S.: The formalization of Message Sequence Charts. Computer Networks
and ISDN Systems 28(1), 1643–1657 (1996)

[47] Mauw, S., Reniers, M.A.: An algebraic semantics of Basic Message Sequence
Charts. The Computer Journal 37(4), 269–278 (1994)

[48] Okazaki, M., Aoki, T., Katayama, T.: Formalizing sequence diagrams and state
machines using Concurrent Regular Expression. In: 2nd International Workshop
on Scenarios and State Machines: Models, Algorithms, and Tools, SCESM 2003
(2003)

[49] Mauw, S., Reniers, M.A.: Operational semantics for MSC’96. Computer Net-
works 31(17), 1785–1799 (1999)

[50] Mauw, S., Reniers, M.A.: High-level Message Sequence Charts. In: 8th Interna-
tional SDL Forum: Time for Testing, SDL, MSC and Trends (SDL 1997), pp.
291–306. Elsevier, Amsterdam (1997)

[51] Letichevsky, A.A., Kapitonova, J.V., Kotlyarov, V.P., Volkov, V.A., Letichevsky
Jr., A.A., Weigert, T.: Semantics of Message Sequence Charts. In: Prinz, A., Reed,
R., Reed, J. (eds.) SDL 2005. LNCS, vol. 3530, pp. 117–132. Springer, Heidelberg
(2005)

[52] Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC
graphs. Theoretical Computer Science 331(1), 97–114 (2005)

[53] Uchitel, S., Kramer, J., Magee, J.: Incremental elaboration of scenario-based spe-
cification and behavior models using implied scenarios. ACM Transactions on
Software Engineering and Methodology 13(1), 37–85 (2004)

[54] Graubmann, P., Rudolph, E., Grabowski, J.: Towards a Petri net based semantics
for Message Sequence Charts. In: 6th International SDL Forum: Using objects
(SDL 1993), pp. 179–190. Elsevier, Amsterdam (1993)

[55] Heymer, S.: A semantics for MSC based on Petri net components. In: 4th Inter-
national SDL and MSC Workshop (SAM 2000), pp. 262–275 (2000)

[56] Sgroi, M., Kondratyev, A., Watanabe, Y., Lavagno, L., Sangiovanni-Vincentelli,
A.: Synthesis of Petri nets from Message Sequence Charts specifications for proto-
col design. In: Design, Analysis and Simulation of Distributed Systems Symposium
(DASD 2004), pp. 193–199 (2004)

[57] Gunter, E.L., Muscholl, A., Peled, D.: Compositional Message Sequence Charts.
International Journal on Software Tools for Technology Transfer 5(1), 78–89
(2003)

[58] Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and
statecharts to analysable Petri net models. In: 3rd International Workshop on
Software and Performance (WOSP 2002), pp. 35–45. ACM Press, New York (2002)

[59] Jonsson, B., Padilla, G.: An execution semantics for MSC-2000. In: Reed, R.,
Reed, J. (eds.) SDL 2001. LNCS, vol. 2078, pp. 365–378. Springer, Heidelberg
(2001)

[60] Lund, M.S.: Operational analysis of sequence diagram specifications. PhD thesis,
Faculty of Mathematics and Natural Sciences, University of Oslo (2008)



102 M.S. Lund, A. Refsdal, and K. Stølen

[61] Lund, M.S., Stølen, K.: A fully general operational semantics for UML 2.0 se-
quence diagrams with potential and mandatory choice. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 380–395. Springer, Heidelberg
(2006)

[62] Cengarle, M.V., Knapp, A.: Operational semantics of UML 2.0 interactions. Tech-
nical report TUM-I0505, Technische Universität München (2005)

[63] Mühlberger, H.: Eine verteile operationale Semantik für UML 2.0-Interaktionen.
Diplomarbeit, Institut für Informatik, der Ludwig-Maximilians-Universität
München (2007)

[64] Cavarra, A., Küster-Filipe, J.: Formalizing liveness-enriched sequence diagrams
using ASMs. In: Zimmermann, W., Thalheim, B. (eds.) ASM 2004. LNCS,
vol. 3052, pp. 67–77. Springer, Heidelberg (2004)

[65] Grosu, R., Smolka, S.A.: Safety-liveness semantics for UML 2.0 sequence diagrams.
In: 5th International Conference on Application of Concurrency to System Design
(ACSD 2005), pp. 6–14. IEEE Computer Society, Los Alamitos (2005)

[66] Harel, D., Marelly, R.: Come, let’s play: Scenario-based programming using LSCs
and the Play-Engine. Springer, Heidelberg (2003)

[67] Harel, D., Thiagarajan, P.S.: Message Sequence Charts. In: Lavagano, L., Martin,
G., Selic, B. (eds.) UML for real. Design of embedded real-time systems, pp.
77–105. Kluwer, Dordrecht (2003)

[68] Harel, D., Maoz, S.: Assert and negate revisited: Modal semantics for UML se-
quence diagrams. In: 5th International Workshop on Scenarios and State Ma-
chines: Models, Algorithms, and Tools (SCESM 2006), pp. 13–19. ACM Press,
New York (2006)

[69] Sengupta, B., Cleaveland, R.: Triggered Message Sequence Charts. SIGSOFT
Software Engineering Notes 27(6), 167–176 (2002)

[70] Sengupta, B., Cleaveland, R.: Triggered Message Sequence Carts. IEEE Transac-
tions on Software Engineering 32(8) (2006)

[71] Kosiuczenko, P., Wirsing, M.: Towards an integration of Message Sequence Charts
and Timed Maude. Journal of Integrated Design & Process Science 5(1), 23–44
(2001)

[72] Crane, M.L., Dingel, J.: On the semantics of UML state machines: Categoriza-
tion and comparison. Technical report 2005-501, School of Computing, Queens’s
University, Kingston (2005)

[73] Broy, M., Cengarle, M.V., Rumpe, B.: Towards a system model for UML,
the structural data model. Technical report TUM-I0612, Technische Universität
München (2006)

[74] Broy, M., Cengarle, M.V., Rumpe, B.: Towards a system model for UML, part 2:
The control model. Technical report TUM-I0710, Technische Universität München
(2007)

[75] Broy, M., Cengarle, M.V., Rumpe, B.: Towards a system model for UML, part 3:
The state machine model. Technical report TUM-I0711, Technische Universität
München (2007)

[76] Broy, M., Stølen, K.: Specification and development of interactive systems. In:
FOCUS on streams, interface, and refinement. Springer, Heidelberg (2001)

[77] Simons, A.J.H.: On the compositional properties of UML statechart diagrams.
In: Rigorous Object-Oriented Methods (ROOM 2000), Workshops in Computing,
BCS (2000) (2000)

[78] Rossi, C., Enciso, M., de Guzmán, I.P.: Formalization of UML state machines
using temporal logic. Software and Systems Modeling 3(1), 31–54 (2004)



Semantics of UML Models for Dynamic Behavior 103

[79] Hinkel, U.: Verification of SDL specifications on the basis of stream semantics.
In: 1st Workshop of the SDL Forum Society on SDL and MSC (SAM 1998), pp.
241–250 (1998)

[80] Holz, E., Stølen, K.: An attempt to embed a restricted version of SDL as a target
language in Focus. In: Formal Description Techniques VII (FORTE 1994), pp.
324–339. Chapman and Hall, Boca Raton (1994)

[81] Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Tran-
sactions on Software Engineering and Methodology 5(4), 293–333 (1996)

[82] Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-
Trauring, A., Trakhtenbrot, M.: STATEMATE: A working environment for the
development of complex reactive systems. IEEE Transactions on Software Engi-
neering 16(4), 403–414 (1990)

[83] Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Specification and Valida-
tion Methods, pp. 9–36. Oxford University Press, Oxford (1995)

[84] Börger, E., Cavarra, A., Riccobene, E.: On formalizing UML state machines using
ASMs. Information and Software Technology 46(5), 287–292 (2004)

[85] Börger, E., Cavarra, A., Riccobene, E.: Modeling the dynamics of UML state
machines. In: International Workshop on Abstract State Machines, Theory and
Applications, pp. 223–241. Springer, Heidelberg (2000)

[86] Börger, E., Cavarra, A., Riccobene, E.: Modeling the meaning of transitions from
and to concurrent states in UML state machines. In: 2003 ACM Symposium on
Applied Computing, pp. 1086–1091. ACM Press, New York (2003)

[87] Jürjens, J.: A UML statecharts semantics with message-passing. In: 2002 ACM
Symposium on Applied Computing, pp. 1009–1013. ACM Press, New York (2002)

[88] Jürjens, J.: Secure systems development with UML. Springer, Heidelberg (2005)
[89] von der Beeck, M.: A structured operational semantics for UML-statecharts. Soft-

ware and Systems Modeling 1(2), 130–141 (2002)
[90] Knapp, A., Merz, S., Rauh, C.: Model checking timed UML state machines and

collaborations. In: 7th International Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems, pp. 395–416. Springer, Heidelberg (2002)

[91] Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer 1, 134–152 (1997)

[92] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer
Science 126(2), 183–235 (1994)

[93] Lüttgen, G., von der Beeck, M., Cleaveland, R.: A compositional approach to
statecharts semantics. Technical report, Institute for Computer Applications in
Science and Engineering (2000)

[94] Jansen, D.N., Hermanns, H., Katoen, J.P.: A QoS-oriented extension of UML sta-
techarts. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863,
pp. 76–91. Springer, Heidelberg (2003)

[95] Jansen, D.N., Hermanns, H.: Qos modelling and analysis with UML-statecharts:
the Stocharts approach. SIGMETRICS Performance Evaluation Review 32(4),
28–33 (2005)

[96] Eshuis, R., Wieringa, R.: Requirements-level semantics for UML statecharts. In:
4th International Conference on Formal Methods for Open Object-Based Distri-
buted Systems IV, pp. 121–140. Kluwer, Dordrecht (2000)

[97] Huszerl, G., Kosmidis, K., Cin, M.D., Majzik, I., Pataricza, A.: Quantitative
analysis of UML statechart models of dependable systems. The Computer Jour-
nal 45(3), 260–277 (2002)


	 Semantics of UML Models for Dynamic Behavior
	Introduction
	Characterization of Scope, Main Notions, and Criteria for Evaluation
	Main Categories of Semantics
	Sequence Diagrams and Similar Notations
	Denotational Semantics
	Denotational Semantics with Time
	Denotational Semantics with Probabilities
	Operational Semantics
	Operational Semantics with Time
	Operational Semantics with Probabilities

	State Machines and Similar Notations
	Denotational Semantics
	Denotational Semantics with Time
	Denotational Semantics with Probabilities
	Operational Semantics
	Operational Semantics with Time
	Operational Semantics with Probabilities

	Evaluation and Comparison
	Summary and Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




