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Abstract. STAIRS is an approach to the compositional development of UML interac-
tions, such as sequence diagrams and interaction overview diagrams. An important aspect
of STAIRS is the ability to distinguish between underspecification and inherent nondeter-
minism through the use of potential and mandatory alternatives. This paper investigates
this distinction in more detail. Refinement notions explain when (and how) both kinds
of nondeterminism may be reduced during the development process. In particular, in this
paper we extend STAIRS with guards, which may be used to specify the choice between al-
ternatives. Finally, we introduce the notion of an implementation and define what it means
for an implementation to be correct with respect to a specification.
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quirements/Specifications; D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs
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1. Introduction

STAIRS [9, 8] is an approach to the compositional development of UML interac-
tions, such as sequence diagrams and interaction overview diagrams. Interactions
in UML 2.0 [13] are behavioural definitions that describe some, but not necessarily
all, of the behaviour that a given system performs. Most often the interactions will
describe positive behaviours, i.e. behaviours that the system is allowed to perform.
There may also be behaviours that the interactions define as negative, meaning that
they are unacceptable, and there may even be behaviours of the system that are not
at all covered by any of the interactions defined.

This partiality of interactions is motivated by several factors. First of all, the
description of a real system requires far too many interaction diagrams to define
all the behaviours. To manage such a volume of diagrams would be impracti-
cal. Also, the goal of interactions is to visualize important interaction patterns.
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Thus the emphasis is on importance, rather than completeness. This is in contrast
to most other kinds of behavioural specifications, including UML state machines.
The definition of a state machine is complete in the sense that it may be seen to
define all the possible behaviours of that entity.

A methodology may initially use interactions to capture user requirements, and
use these as stepping stones for the next development stages where emphasis is
placed more on completeness and realizability. STAIRS supports this through the
notion of refinement. In particular, the refinement definitions take into account that
initial specifications in the form of interactions typically describe only a few exam-
ple scenarios. A scenario not described by an initial specification is not necessarily
unwanted, but it has not been thought of yet. Thus, a refinement step may be to
include new scenarios in the specification, as well as to reduce the amount of un-
derspecification and nondeterminism in the specification. Refinement may also be
to describe some of the aspects of a scenario in more detail.

In this paper we focus on defining and refining specifications with nondeter-
minism. In the introductory chapter of the UNITY-book [3] Chandy and Misra
observe:

Nondeterminism is useful in two ways. First, it is employed to
derive simple programs, where simplicity is achieved by avoiding un-
necessary determinism; such programs can be optimized by limiting
the nondeterminism, i.e., by disallowing executions unsuitable for a
given architecture. Second, some systems (e.g., operating systems and
delay-insensitive circuits) are inherently nondeterministic; programs
that represent such systems have to employ some nondeterministic
constructs.

STAIRS is based on this overall observation. However, contrary to Chandy and
Misra we take the position that the two useful ways of using nondeterminism
should be described differently.

Avoiding unnecessary determinism may for instance be achieved through under-
specification. By underspecification we mean that the specification gives several
alternative behaviours that are equivalent in the sense that they all serve the same
purpose. For an implementation to be correct, it is sufficient to fulfil only one of
the alternative behaviours. Underspecification may also be used as an abstraction
mechanism, for instance by giving several alternative behaviours but not stating
how to select between them. This will typically later be refined into an if-then-else
construct in the implementation.

On the other hand, inherent nondeterminism is used to capture alternative be-
haviours that must all be possible for the implementation. A typical example is the
tossing of a coin, where both heads and tails should be possible outcomes, and no
legal refinement should remove one of these two alternatives. A system may also
need to exhibit nondeterministic behaviour due to differences in its environment.

Inherent nondeterminism is very different from underspecification. and should
be described differently. One important reason for this is that unless we do not dis-
tinguish these two, there will be no way to ensure that inherently nondeterministic
behaviour is implemented as such. This may not seem like a major problem at first.
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If the development team knows that a given specification should be implemented
as delay-insensitive circuits you will probably get the inherently nondeterministic
implementation that you expect. However, in the domain of information security,
the inherently nondeterministic behaviour is fundamental for the validity of the
specification. As pointed out in e.g. [10] and [12], security properties are in gen-
eral not preserved by standard refinement. If nondeterminism is used as a means
to hide the internal workings of a system, it is essential that it is not treated as un-
derspecification, which allows elimination of all uncertainty (nondeterminism) in
a refinement.

In [14] Roscoe points out that using inherent nondeterminism ensures security as
it prevents the making of any inference about the possible outcomes, while for non-
determinism based on underspecification there are three possible conclusions about
the security of a system: secure, insecure, or don’t know. Hence, it makes things a
lot easier if the specification language provides a way to distinguish between these
two ways of using nondeterminism.

In the setting of UML interactions, the operator alt is used to specify alternative
behaviours. As the UML standard [13] is rather vague on whether these alternatives
represent underspecification or inherent nondeterminism, people interpret the same
interaction differently, leading to confusion. This could be avoided by having two
different operators for specifying alternative behaviours, as we have in STAIRS.
This is particularly important as the partiality of interactions makes it important to
know which of the described scenarios represent significantly different behaviours
and which scenarios only serve as examples of how to achieve the same purpose.

The remainder of this paper is structured into six sections. Section 2 introduces
the basic STAIRS formalism, while Section 3 uses this in an example specification
illustrating nondeterminism. In Section 4 we extend the formalism with guards,
and in Section 5 we discuss refinement in STAIRS with emphasis on nondetermin-
ism. Section 6 defines what it means for a system to be a correct implementation of
a STAIRS specification. Section 7 provides a brief summary and relates STAIRS
to approaches known from the literature.

2. Background: UML interactions with denotational trace semantics

In this section, we present the basic STAIRS formalism. In Section 2.1 we present
our textual syntax for interactions. Section 2.2 gives the fundamental trace mech-
anisms, while Section 2.3 formally defines denotational trace semantics for UML
interactions.

2.1 Syntax of interactions

The set of syntactically correct interactions, denoted by D, is defined by the BNF-
grammar in Fig. 1. Signal represents the actual content of a message, Lifeline is
the name of a lifeline (representing a component) in the diagram and Set should
be an expression that evaluates to a subset of Ny (the natural numbers including 0).

As can be seen from the definition, a message is a triple (s, tr, re) of a signal s, a
transmitter {r, and a receiver re. As a shorthand, we will often use the name of the
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{Interaction) — (Empty) | (Event) |
(Weak sequencing) | (Refuse) |
(Assert) | (Potential alternatives) |
(Mandatory alternatives) | (Loop)

(Empty) — skip

(Event) — (Kind) (Message)

(Kind) — (Transmission) | (Reception)
{Transmission} — |

(Reception) - ?

(Message) — ( Signal , (Transmitter) , (Receiver) )
(Transmitter) — Lifeline

(Receiver) — Lifeline

(Refuse) — refuse [ (Interaction) ]
(Assert) — assert [ (Interaction) ]
(Potential alternatives) — alt [ (Interaction list) ]
(Mandatory alternatives) — xalt [ (Interaction list) ]
(Loop) — loop Set [ ({Interaction) ]
(Weak sequencing) — seq [ (Interaction list) ]
(Interaction list) — (Interaction) |

(Interaction list) , (Interaction)

Fig. 1: Syntax of interactions.

signal to stand for the whole message in cases where the transmitter and receiver
are clear from the context. We let £ denote the set of all lifelines, and M denote
the set of all messages. We distinguish between two kinds of events; a transmission
event tagged by an exclamation mark “!”* represents the transmission of a message,
while a reception event tagged by a question mark “?” represents the reception of
a message. & denotes the set of all events, while % denotes {!, ?}.

We define the functions

k._.eE-K, m_eE->M, tr._re._e&E—- L

to yield the kind, message, transmitter and receiver of an event, respectively. We
also overload ¢+ and re to yield the transmitter and receiver of a message.
We also define the functions

. €D ->PL), ev..eD—-PE), msg._. €D —PM)

to yield the set of lifelines, events and messages of an interaction, respectively.

Interactions are built from events through the application of various operators as
defined by the grammar in Fig. 1. We do not cover the complete set of operators
in UML 2.0 [13], but rather focus on a few essential operators. These fundamental
operators may be used to define other useful, high-level operators as demonstrated
in Section 5.2. See [6] for STAIRS definitions of additional operators like parallel
execution and gates.
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The operators assert, alt, seq and loop are UML 2.0 operators. The operator
xalt is new, proposed in [9] to model mandatory alternatives, i.e. alternatives that
must all be present in the final implementation. For negation, UML 2.0 uses the
operator neg. However, this operator is used in several contexts, with slightly
different meanings as we explain in [16]. Therefore, we have in this paper chosen
to introduce a new operator refuse that covers one of these traditional uses of neg.

We only consider interactions that are well-formed in the sense that if both the
transmitter and the receiver lifelines of a message are present in the diagram, then
both the transmission and the reception event of that message must be present as
well. Formally:

VYmemsgd: (trmelldAremelld) = ((!,m)€evd A(?,m) € ev.d)

Also, in this paper we assume that for all operators except from seq, the operand(s)
consist only of complete messages, i.e. messages with both the transmission and
the reception event within the operand.

2.2 Representing executions by traces

In STAIRS, we define the semantics of interactions by using sequences of events.
By A“ we denote the set of all finite and infinite sequences over the set A. We use
() to the denote the empty sequence. Moreover, by {e;,es,...,e,) we denote the
sequence of m elements, whose first element is ¢;, whose second element is e, and
so on. We define the functions

#_ €AY > NyU{oo}, _[_-]1€EA’XN oA

to yield the length and the nth element of a sequence. Hence, #a yields the number
of elements in a and a[n] yields a’s nth element if n < #a.
We also need functions for concatenation, truncation and filtering:

T_EAYXAY 5 AY, | eAYXNy— AY, _®_€eP(A)XAY > AY

Concatenating two sequences implies gluing them together. Hence, a| ~ a> de-
notes a sequence of length #a + #a; that equals a; if @, is infinite, and is prefixed
by a; and suffixed by a», otherwise. For any 0 < i < #a, we define d; to denote the
prefix of a of length i.

The filtering function ® is used to filter away elements. By B®a we denote the
sequence obtained from the sequence a by removing all elements in a that are not
in the set of elements B. For example, we have that

{1,3}1841,1,2,1,3,2) = (1, 1, 1,3)

A trace h is a sequence of events, used to represent a system run. For any single
message, transmission must happen before reception if both events are present.
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Thus we get the following well-formedness requirement on traces, stating that if at
any point in the trace we have a transmission event, up to that point we must have
had at least as many transmissions as receptions of that particular message:

Vie[l,#h]: khli]l=! =
#(({ 1} X {m.h[i]}) ® A;) > #(({?} X {m.h[i]}) ® Al;)

H denotes the set of all well-formed traces.

2.3 Semantics of interactions

The semantics of interactions is defined by a function [ ]| that for any interaction
d yields a set [ d ]| of interaction obligations. The term obligation is used to ex-
plicitly convey that any implementation of a specification is obliged to fulfil each
specified alternative. (What it formally means to fulfil an obligation is discussed
in Section 6.) An interaction obligation is a pair (p, n) of sets of traces. The first
set p represents positive traces that may be the result of running the final system,
while the second set n represents negative traces that must not appear in the imple-
mentation of the obligation. Traces not defined as positive or negative are called
inconclusive. As will be formally defined in Section 5, a refinement may later re-
define (some of) these inconclusive traces as positive or negative. An obligation
pair (p, n) is contradictory if p N n # 0.

The empty diagram, denoted by skip, is a specification without any events that
corresponds to a program doing nothing. The empty diagram defines the empty
trace as positive:

[ skip T %" {({0}.0)} (1)

For an interaction consisting of a single event e, its semantics is given by:

Tel € ((Ke)).0)) @)

The actual content of the messages is not significant for the purpose of this paper.
Hence, we do not give any semantic interpretation of messages as such.

The rest of this section will define the semantics of the different composition
operators described briefly in Section 2.1. Table I lists the notational conventions
that will be used in the following definitions.

Tascre I: Notational conventions.

Symbol | Stands for

d interaction

D list of interactions, separated by comma
h trace

s, p.n trace set

o interaction obligation

0 set of interaction obligations
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2.3.1 Weak sequencing

Weak sequencing is the implicit composition mechanism combining constructs of
an interaction. The operator seq is defined by the following invariants:
o The ordering of events within each of the operands is maintained in the re-
sult.

o Events on different lifelines from different operands may come in any order.

o Events on the same lifeline from different operands are ordered such that an
event of the first operand comes before that of the second operand, and so
on.

First, we define weak sequencing of trace sets:

sizsy B theH|IMes mes,:Viel: (3)

el®h=el®h ~el®h)}

where e./ denotes the set of events that may take place on the lifeline /. Formally:

el B lecE|(ke=Atre=DV (ke=Nree=1) 4)

Weak sequencing of interaction obligations is defined as:

def
(pr.n) 2 (pm) E (pr 2 pau(mi z p) U zm)U(pr 2 m2))  (5)

Notice that all traces obtained by combining a negative and a positive trace-set,
will also be negative. Weak sequencing of sets of interaction obligations is defined
as:

0%z 0 « {o1 z 02101 € 01 Aoy € O} (6)

Finally, the seq construct is defined by:

def

[seq[D.d]]l = [seq(DIlz[d]

As an example, the interaction in Fig. 2 shows two messages both originating
from L1 and targeting L2. Its semantics is calculated as:

ITWI=1seq[lx2x!y,2%]1

=((@'xTx02xDxCyDx021 (Def. (7))
= ({410} = (DL 0D = {{{INL 0D
z (7)), 0)} (Def. (2))

= ({(({({(!x, 201, 0)) 2 (KM 0)) 2 {0}, 0)}  (Defs. (3) - (6))
= {({{1x, 226, y), (I, Wy, 201, 0)) = (K200, 0)) (Defs. (3) — (6))
= {({(1x, 2x, 1y, 29D, (Ux, 1y, 2x, D)), 0)) (Defs. (3) — (6))

Hence, this interaction specifies one interaction obligation with two positive traces
and no negative ones. The positive traces state that the transmission of x must be
the first event to happen, but after that either y may be transmitted (by L1) or x may
be received (by L2).
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sd W

Fig. 2: Weak sequencing.

2.3.2 Negative behaviour

The refuse construct defines negative traces:

[ refuse[d] ] = (@, pun)|(pm) el dl) (8)

Notice that a negative trace cannot be made positive by reapplying refuse. Neg-
ative traces remain negative, since negation should be seen as an operation that
characterizes traces absolutely and not relatively.

2.3.3 Assertion

The assert construct makes all inconclusive traces negative. Except for that the
sets of positive and negative traces are left unchanged:

Lassert[d] ] € ((p.nUH\p) | (p.n) e[ dT) 9)

Notice that contradictory obligation pairs remain contradictory.

2.3.4 Potential alternatives

The alt construct is used when specifying underspecification, i.e. to define potential
traces that are equivalent in the sense that it is sufficient for an implementation to
include only one of them. The semantics of alt is the inner union of each point-wise
selection of interaction obligations from its operands:

def

[altld,....dn]1 = | @{m,...,om} [Vie[l,ml:oielldill} (10)

The inner union of interaction obligations is defined as:
def
) @emy =l b | m) (11)
i€l 1,m] i€l 1.m] i€|1,m]
Fig. 3(a) gives a simple example using the alt construct. The dashed horizontal

line separates the operands. We get:

[Al= [alt[seq[!x, ?x],seq [y, ?y]] ]
={ W1 {{!x 200 0), (v, 2}1.0) } } (Defs. (3) = (7).(10))
=1{ ({1 20, {1y, 71, 0) |} (Def. (11))
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I
alt X i xalt | | X
> | >
e —— s e e . P S —
| y | | y |
e — ﬁ‘ b ::H
| !
| I . I
(a) Potential alternatives (b) Mandatory alternatives

Fig. 3: Specifying alternatives.

2.3.5 Mandatory alternatives

The xalt construct is used to specify inherent nondeterminism, i.e. mandatory al-
ternatives that must all be present in an implementation:

[xalt(d,...du ] € )11 (12)

il 1,m]

Fig. 3(b) has the same messages as Fig. 3(a), but separated by xalt instead of alt.
In this case, we get two interaction obligations:

[A” 1= [ xalt[seq[!x,?x],seq [y, 2y]]

U { [ seq[!x,2x] 1I. [ seq [!y. 2y] 1} (Def. (12))

U HAx, 201 0L (K, 20}, 0)) ) (Defs. (3) = (7))
= {{{!x, 72010), (Kly, 20}, 0) } (Def. of 1)

I

2.3.6 Loop

For a set of interaction obligations we define a finite loop construct u,, where
n € Ny denotes the number of times the body of the loop is iterated. u, O is
defined inductively as follows:

o [OLo)  ifn=0
W0 = 0 ifn=1 (13)
Hn—1 O =z O otherwise

For a definition of infinite loop, see [6].

In the UML 2.0 standard [13], loop is used together with limits stating the mini-
mum and maximum number of times the content of the loop should be executed. In
our definition, the set / is a generalization of this, such that the numbers in 7 specify
the possible alternatives for how many times the loop content should be executed.
Not all of these need to be actual alternatives in an implementation, meaning that
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the definition of loop uses the point-wise inner union between these alternatives,
similar to the definition of alt:
[loop7[d]] %« {Lﬂo,—[‘v’fr—:!:o,—&p;ﬂd]}} (14)

iel

L)D;‘ L2

—

loop
{031s2} % :

|

I

——
|

Fig. 4: Looping.

As an example, the interaction in Fig. 4 has the following semantics:

[L]=10loop{0,1,2}[seq[!x, 2x]] ]I
={ Wiejo.1200i | Yi € {0,1,2} :

o; € i [ seq [!x,?x] ] } (Def. (14))
={ Wieto.1210i | Vi €{0,1,2} :
0;i € i {({(!x, 720}, 0)} } (Defs. (3) = (7))

={ Wie01210i | 00 € o {({{!x, 2x)}, 0)} A
o1 € iy {({{!x, 20}, 0)} A
02 € po {({{!x, 7x)}, 0)} }
= { Wieo.1210i | 00 € {({O}, 0)} A
o1 € {({{!x, 2x)}, 0)} A
02 € {({{!x, 70}, 0)}
z {({(!x, 7)1, 0)} } (Def. (13))
={ Wigo.1210i | 00 € {({O}, 0)} A
01 € {({{!x, 20}, 0)} A
o2 € {({{!x, ?x, Ix, 2x),
(Ix, Ix, 72x, 2x)}, 0)} } (Defs. (3) — (6))
={1{ {0} 0),
({{!x, 7}, 0),
¢ Tx, U, 200, (U Y, 7, 2201, 0) ) )
= O, (g 20, (s, 2x, Ly, 200, (U, tx, 2x, 2000, @) | (Def. (11))

3. STAIRS and nondeterminism

As seen in the previous section, weak sequencing may result in several different
traces with the same events in a somewhat different order. These traces are alterna-
tive means to achieve the same goal, and they are therefore grouped into the same
interaction obligation as it is sufficient to keep only one of them in an implementa-
tion.
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In UML 2.0, the other means to specify alternative behaviours is by using the
operator alt. This is used both for specifying potential alternatives where keeping
only one is sufficient, and for mandatory alternatives that must all be present in a
correct implementation. In STAIRS, we have distinguished these two uses by sepa-
rating between our two operators alt and xalt. Each use of UML 2.0 alt corresponds
in STAIRS to either alt or xalt. In this section we present an example illustrating
the use of these two operators.

csC ,|

| =,
A:sender ’%{ S:network : B:receiver

Fig. 5: Composite structure of context C.

Consider a situation where a sender communicates with a receiver through a
network of type S as shown in the UML composite structure diagram in Fig. 5
(notice that this is not an interaction). A very simple communication is shown by
the interaction in Fig. 6, its semantics being:

{ ({({(m, A, S),2m,A,S),!(m, S, B), A(m, S, B))},0) }

sd Comm J
g

‘ A:sender | [ S:network . l B:receiver

! m

Fig. 6: Very simple communication.

Next, we would like to specify that there is a need for redundant communication
through the network S. That is, the network S needs to support more than one way
of bringing the message m from one end of the network to the other. There may be
several reasons for requiring this redundancy:

o Several paths through the network will make it easier to exploit the full ca-
pacity of the network.

o Multiple paths will ensure increased internal robustness of the network and
as such improve the availability of the full communication.

o Multiple paths will make it more difficult to attack the network to jeopardize
the communication, and as such the communication security is improved.
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Fig. 7: Internal structure of the network S showing three communication paths.

We indicate in Fig. 7 a simple network architecture for S where there are al-
ternative branches. A real communication network may of course have far more
paths, but giving a few are sufficient for the purpose of this paper. We want to
make an interaction where we require two (different) communication possibilities,
and we may do this by introducing an xalt construct as shown in Fig. 8, where S is
expanded according to the structure in Fig. 7.

We have used xalt here in order to express that the network must support at least
two communication paths. Of course, for each concrete communication only one

sd S_Cnrnm_,! |
=
[ Azsender | | G:N | | N1:N | | N2:N | | N3N l N4:N | Bireceiver ‘
: : = . T : —
1 m i | 1 |
7:3.‘ [ ] ] ]
i I I | | I
i I | 1 | | |
e R R L ! | & ,
| . . | | = | |
1 | ] ] 1 1 |
) SRS i ————— ! [ !
1 ] 1 ]
] ] m ] .'
| i : i i
i ; i : i | ;
] ] ] t
1 1 ] 1 1 ]
! : e e e |
I I 1 b -
1 ) ) 1 1 L]
| 1 ] 1 i 1
| | [ | e m— 1 =
: : I m i I m
i : \. i o] = i
i ] 1 |} ] i
1 1 ] ] 1 ]
) 1 - T T T T
1 1 1 ] ] ] )
) 1 | 1 4
] ) | | 1 I 1
] ] I 1 1 | I
| 1 1 1 1 1 ]

Fig. 8: Communication behaviour requiring two communication patterns.
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of them will be applied. After node N2, the network S has yet another branch
giving two alternative paths. For the sake of the discussion we assume that it is not
important to have both of these available, and so we specify the alternatives using
alt and not xalt in Fig. 8.

The semantics of S_Comm is:

{ ({{{(m,A,G), Am,A,G),!(m,G,N1), A(m,G,N1),
(m,N1,B), 2(m, N1, B))}, 0),
({(!(m, A, G). Am, A, G), \(m, G, N2), 2(m, G, N2),
!(m,N2,N3),%m,N2,N3), (m, N3, B), 2(m, N3, B)),
({(m,A,G), Nm,A,G),(m,G,N2), Am,G,N2),
(m, N2, N4), 2(m, N2, N4), \(m, N4, B), A(m, N4, B))}, 0) }

Fig. 9 illustrates this semantics using a specialized Venn-diagram with one ellipse
for each interaction obligation. Traces not shown as positive or negative in an
obligation are inconclusive for this obligation.

=g =
Positive R A->G->N2->N3->B

/ A->G->N1->B \ .-/ A->G->N2->N4->B
|_ L

\

Negative \\ ) /f’ \p//

|
1
|

/

Fig. 9: Venn-diagram of the specification in Fig. 8.

Formally, S_.Comm is a refinement of Comm. Refinement will be formally de-
fined in Section 5. In Section 5 we will also develop this example further, by giving
some possible refinements to illustrate the similarities and differences between the
two operators alt and xalt. But first, in the next section, we formally extend STAIRS
with guards, which may be used to specify the choice between alternatives.

4. Extending STAIRS with data and guards

Although the focus of interactions is on the messages, the diagrams may also be
decorated with data. The most common use of data in interactions is in guards,
which is a mechanism for choosing between alternatives. Data is also used in
assignments and general constraints. In this section we extend our basic formalism
with definitions of these concepts. The extension ensures that (sub-)interactions
not including data have the same semantics as before.

4.1 Data

Since interactions mainly specify events and not data, the exact data values will
most of the time be underspecified (or unspecified). Changes in the data may in
general happen at any time, also when there is nothing in the diagram indicating
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such a change. As a consequence, in the semantic model we do not include data as
such. Instead, data is represented indirectly through events representing its use in
assignments, constraints, and guards.

Formally, we extend the syntax of interactions as defined by the BNF-grammar
in Fig. 10. Nonterminals that are unchanged from the original syntax in Fig. 1 are
not repeated. Variable should be either a global variable or a variable local to
the lifeline on which the assignment is placed (not shown in our textual syntax),
while Expression is a mathematical expression and Constraint an expression
that evaluates to true or false. If an operand of guarded alt or guarded xalt does
not contain an explicit guard, we interpret this as being the guard rrue.

{Interaction) — (Empty) | (Event) |
(Weak sequencing) | (Refuse) |
(Assert) | (Guarded alt) |
(Guarded xalt) | (Loop) |
(Assignment) | (Constraint)

(Assignment) — assign ( Variable , Expression )
(Constraint) — constr ( Constraint )

{(Guarded alt) — alt [ {(Guarded list) ]

(Guarded xalt) — xalt [ (Guarded list) ]

(Guarded list) — (Guarded interaction) |

(Guarded list) , (Guarded interaction)
(Guarded interaction) — (Guard) — (Interaction)
{Guard) — Constraint

Fig. 10: Syntax of interactions with data.

In the semantics, we extend the set of trace events with the two special events
write (for assignments) and check (for constraints). We also need the notion of a
state. Let Var be the set of all variables and Val be the set of all variable values. A
state ¢ is then a total function assigning a value to each variable. Formally:

o € Var — Val

For any expression expr, we use expr(c) to denote its value in o

4.2 Assignment

Explicit specification of variable values may be done by using assignments. In
UML 2.0, assignments are written inside a rounded box on the appropriate lifeline,
as illustrated in Fig. 11.

Semantically, we represent an assignment var = expr by the special event
write(o, o’) where o is the state immediately before the assignment and o’ the
state immediately after:
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sd assign J LA I

Fig. 11: Assignment.

[ assign(var, expr) | 4 (15)
{ (Kwrite(o, ') | &’ (var) = expr(c) A
YveVar:(v=varVva'(v) = o(v)},0) )

4.3 Constraints (state invariants)

In UML 2.0, constraints are written within curly brackets, as illustrated in Fig. 12.
A constraint is a restriction that must be fulfilled by the system, meaning that we
have a negative trace if the constraint is broken.

dconsian | |
sd constraint | A : B
] -

{avar=0}

Fig. 12: Constraint.

Semantically, a constraint is represented by the special event check(c), where o
is the state in which the constraint is evaluated:

[[ constr(c) | ) (16)
{ ({{check(a)) | c(o)} , {{check(c)) | =c(o))) }

This definition ensures that if the constraint is a tautology, then the semantics of
constr(c) has no negative traces, and that a contradiction gives no positive traces:

[[ constr(true) ||
= {({(check(cr)) | true(o)}, {{check(c)) | false(c)}))
= {({{check(o)) | o € Var — Val}, 1)}

[[ constr(false) |
= {({(check(c)) | false(o)}, {{check(c)) | true(o)}))
= {(0, {{check(c)) | o € Var — Val)})}



172 R. K. RUNDE, @. HAUGEN, K. STOLEN

Notice that one constraint in itself gives potentially an infinite number of system
traces, varying with respect to the state component only.

As an example of the use of constraints in an interaction, the complete semantics
of the interaction in Fig. 12 may be calculated as:

[ constraint ]| =
[ seq [constr(avar = 0), !m, ?m, constr(avar > 0)] ||
=((fleconstriavar=0) =z 'm) =1 ?7m 1) = [ constr(avar > 0) ]|
(Def. (7))
= ( ([ constr(avar = 0) ]| x {({(!m)},0)} ) = {({{(?m)}, D)} )
> || constr(avar > 0) ||
(Def. (2))
= ( ({({{check(o)) | o(avar) = 0}, {{check(c)) | a(avar) # 0})}
z {({(Im)}, 0)} ) = {({(7m)}, 0)} )
> {({{check(c")) | o' (avar) > 0}, {{check(c")) | o’ (avar) < 0})}
(Def. (16))
= ({ ((check(o)) | o(avar) = 0} = {{!m)},
{{check(o)) | o(avar) # 0} = {(Im)}
U{{check(o)) | o(avar) # 0} = 0
U{(check(o)) | o(avar) = 0} = 0) }
z (({(Tm)}, 0)} )
> {({{check(c)) | o’(avar) > 0}, {{check(c”)) | o’ (avar) < 0})}
(Defs. (5) - (6))
= ({ ({{check(c), \m) | o(avar) = 0}
U{{!m, check(c)) | o(avar) = 0},
{{check(a), !m) | o(avar) + 0}
U{(!m, check(c)) | o(avar) # 0}) }
z {({(Tm)}, 0)})
= {({{check(c")) | o' (avar) > 0}, {{check(c")) | o’ (avar) < 0})}
(Def. (3))
= { ({{check(o), !m, 7m) | o(avar) = 0}
U{{!m, check(o), 2m) | o(avar) = 0},
{{check(c), \m, Tm) | o(avar) # 0}
U{{!m, check(c), Im) | o(avar) # 0}) }
= (({{check(a™")) | o’ (avar) > 0}, [{check(c”)) | o (avar) < 0})}
(Defs. (3) - (6))
= { ({{check(c), 'm, Tm, check(c”)) | o(avar) = 0 A o’ (avar) > 0))
U{{!m, check(c), 2m, check(c™”)) | o(avar) = 0 A o (avar) > 0},
{{check(o), \m, 2m, check(c”)) | o(avar) # 0V ¢’ (avar) < 0}
U{{!m, check(c), 7m, check(c”)) | o(avar) # 0 v o’ (avar) < 0}) }
(Defs. (3) — (6), and formula manipulation)

4.4 Guards (interaction constraints)

According to UML 2.0, alternatives (and other combined fragments) in an interac-
tion may be guarded by an interaction constraint (also called a guard). A guard is



REFINING UML INTERACTIONS 173

sd guards I | ]
| sdgwrds |

art J T :
| S [avaT 0] |

Fig. 13: Guards.

a special kind of constraint that may only occur at the beginning of the interaction
operand in question. As opposed to general constraints, guards are written inside
square brackets, as illustrated in Fig. 13. As the example illustrates, the guards
used in an alt (or xalt) may be overlapping and need not be exhaustive.

If the guard is true, the interaction operand describes positive traces of the sys-
tem. The semantics in the case of a false guard is not stated explicitly in the UML
2.0 standard [13]. However, with guards being a specialization of general con-
straints, it is natural to interpret traces with a false guard as negative. As will be
demonstrated in Section 5, this is advantageous as it means that adding guards to
an alt/xalt-construct constitutes a valid refinement step. A side effect of this is that
we will be able to model guards by using the more general notion of constraints as
defined in the previous section.

4.4.1 Guarded alt

UML 2.0 [13] states that if none of the operands of an alt construct has a guard
that evaluates to true, none of the operands are executed and the remainder of the
enclosing interaction is executed. This gives the following semantics for guarded
alt:

Lalt[c; > dy,....cm— du] T & (17)

{Hior,....on, ({(check(o)) | {/\jell.m] "ICJ')(U“)I, 0)} |
Yie[l.m]: o; € [ seq[constr(c;),d;] ] }

The semantics of Fig. 13 is informally illustrated in Fig. 14. Formally, its com-
plete semantics may be calculated as:



174 R. K. RUNDE, @. HAUGEN, K. STGLEN

— ——
[avar < 0] <>\
Positive [avar = 0] <Ix,?2x>

[ [avar>=0]<ly,?y> \|I

L\ [avar # 0] <Ix,?x> /
Negative [avar < 0] <ly,?y>

e e

Fig. 14: Semantics of guarded alt in Fig. 13.

[ guards ||
= [ alt [avar = 0 — seq [!x, 7x] ,
avar > 0 — seq [y, vl 11
= { I { ({{check(o), x, 7x) | o(avar) = 0},
{{check(c). ! x, 7x) | o(avar) # 0}),
({{check(cr), 'y, 7y} | o(avar) = 0},
{{check(c), 'y, 7y) | o(avar) < 0}), (Defs. (3) —(7),
({{check(a)) | o(avar) < 0} ,0)} } (16),(17))
= { ({{check(c), 'x, 7x) | o(avar) = 0}
U{{check(e), 'y, 7v) | o(avar) > 0}
U{{check(c)) | o-(avar) < 0},
{{check(o), !x, 7x) | o(avar) # 0}
U{(check(o), ly, Tv) | o(avar) < 0}) } (Def. (11))

Definition (17) giving the semantics of guarded alt is consistent with defini-
tion (10) of unguarded alt in Section 2.3. In our new setting, a specification alt [D]
without guards is interpreted as the specification alt [D’] where D’ is the same list
of interactions as D, each one guarded by true. Calculating this semantics using
definition (17), gives us the same semantics as definition (10) when abstracting
away all check-events. This is proved in [15].

4.4.2 Guarded xalt

We define the semantics of guarded xalt as:

[xalt (e = di.....cn = dul 1 € | ] [seq loonstrc).d1]  (18)

ie[1,n]

Unlike guarded alt, the semantics of guarded xalt does not implicitly include the
case where all guards are false, since xalt is used to specify explicit choices that
must be present in the implementation.

As an example, the semantics of Fig. 13 with alt replaced by xalt, is informally
illustrated in Fig. 15. Formally, its complete semantics may be calculated as:



REFINING UML INTERACTIONS 175

AT N T Ty

Positive \
i [avar = 0] <Ix,?x> |'Ilr [avar >= 0] <ly,?7y>
= ]

]

\ [avar # 0] <Ix,7x> /J 1 [avar < 0] <ly,?y> /
Negative \ / \ /
\\“‘“-HE_ e xh__’_/

Fig. 15: Semantics of guarded xalt in Fig. 13.

[ guards ||
= [ xalt [avar = 0 — seq [!x, 7x] .
avar > 0 — seq [ly,?2v] 11

= U { {({(check(c), x,2x) | o(avar) = 0} ,

{(check(c), \x, 2x) | o(avar) # 0})),

{({(check(or), ly, y) | o(avar) 2 0},  (Defs. (3) - (7),

{{check(cr),y, ?y) | o(avar) < 0D} } (16),(18))

= { ({{check(o), \x, 2x) | o(avar) = 0},
{(check(c), \x, 7x) | o(avar) # 0}),
({{check(c), !y, Iy} | o(avar) > 0} ,
{(check(o), ly, 2y} | o(avar) < 0)) } (Def. 1))

As for alt, removing the guards in definition (18) gives the original xalt-semantics
in definition (12).

5. Refinement

In this section we discuss some important aspects of refinement in the setting of
STAIRS. Section 5.1 gives the necessary background for this discussion, present-
ing the main refinement definitions. In the rest of Section 5 we focus on under-
specification and inherent nondeterminism, and how guards may be introduced as
a refinement step in both cases.

5.1 Background: Formal definitions

Refinement means to add information to a specification such that the specification
becomes more complete. This may be achieved by categorizing inconclusive traces
as either positive or negative, or by reducing the set of positive traces. Negative
traces always remain negative. A specification may also become more complete
by introducing more details.

5.1.1 Glass-box refinement

Formally, an interaction obligation (p’, n’) is a refinement of an interaction obliga-
tion (p, n), written (p, n) ~», (p’,n’), iff

ncn A pcpun (19)
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An interaction d’ is a glass-box refinement of an interaction d, written d ~, d’,
iff
Yoel[d]:3o el[d 1:0w,0 (20)

Tueorem 1. The refinement operator ~»g is
o reflexive: d ~, d
o transitive: d ~»y d’ ANd' ~g d” = d ~oy d”
o monotonic with respect to refuse, loop, seq, (guarded) alt and (guarded)
xalt:

d ~s, d' = refuse [d] ~», refuse [d’]

d ~s, d' = loop I [d] ~g loop I [d']

dy ~ag d;, coerly wog dy, = seq [dy,. .., dy] ~g SEQ [d,....d;]
dy wg di,....,dy g dy, = alt[dy,..., dy] wg alt[dy,....d,]
dy wg di,....dy g dy, = Xalt[d),....dn] wg xalt[d],....d,]

m

Proor.  Reflexivity, transitivity and monotonicity with respect to seq, loop and
unguarded alt and xalt is proved in [6]. Monotonicity with respect to refuse and
guarded alt and xalt is proved in [15]. o

By definition (20), new interaction obligations may be freely added to the speci-
fication, thus increasing the mandatory nondeterminism required of an implemen-
tation. Adding new obligations is an important aspect of the STAIRS methodology.
Sometimes, however, it is desirable to restrict this possibility.

A more restrictive notion of refinement is limited glass-box refinement, where
each obligation in the new refined interaction must correspond to an obligation in
the original interaction.

Formally, an interaction d’ is a limited glass-box refinement of an interaction d,
written d ~»; d’, iff

d~ed AYO' €[[d T:Joe[d]:0~0 (21)

Notice that a step of refinement may still increase the total number of obligations,
but only if two different obligations in [[ &’ ] refine the same obligation in [[ 4 ]|.

Methodologically, a STAIRS specification would typically be developed by using
~, initially and switching to the more restrictive ~»; after the desired level of
nondeterminism in the specification has been reached.

5.1.2 Black-box refinement

Black-box refinement may be understood as refinement restricted to the externally
visible behaviour. We define the function

exte HxP(L) - H

to yield the trace obtained from the trace given as first argument by filtering away
those events that are internal with respect to the set of lifelines given as second
argument:

ext(h.l) e leec&|treglVreeél}®h (22)



REFINING UML INTERACTIONS 177

The ext operator is overloaded to sets of traces, to pairs of sets of traces, and sets
of pairs of sets of traces in the standard pointwise manner:

def

ext(s,l) = |ext(h,])|h € s} (23)
ext((p,n), 1) & (ext(p, 1), ext(n, 1)) (24)
ext(0,1) €' {ext((p,m), D) | (p,n) € O) (25)

An interaction d’ is a black-box refinement of an interaction d, written d ~», d’,
iff
Yoeext([d],ll.d): 30" e ext( d" 1.l1lL.d") : 0 ~>, o (26)

Theorem 1 is valid also when replacing >, With ~y, as the properties are inde-
pendent of the content of the actual traces.

Black-box refinements will often include lifeline decompositions that are not
externally visible. Some lifeline decompositions may also be externally visible
due to a change in the sender or receiver of a message. We have already used
this in Fig. 8, where the network S was decomposed into several nodes. Formally,
an interaction d’ is a lifeline decomposition of an interaction d with respect to a
lifeline substitution /s, written d ~»'* &', iff

d ~»y, subst(d’, ls) (27)

where Is € L — L is a function defining the lifeline substitution and the function
subst(d, Ls) yields the interaction d with every lifeline [ in d substituted with the
lifeline /s(/).

5.2 Adding positive behaviour

We now return to our running example from Section 3. Even with two different
communication paths, we have no guarantee that any of them will be available at a
certain time. This is made explicit in Fig. 16, where the empty diagram (i.e. skip)
is added as a third operand to the xalt-construct. When this operand is selected, we
get a positive trace consisting of only two events, the transmission of m from A to
G, and the reception at G. No further communication will take place, and B will
never receive the message.

The semantics of N.Comm is illustrated in Fig. 17. Comparing this with Fig. 9,
which illustrates the semantics of S_.Comm (Fig. 8), we see that every interaction
obligation given by S_Comm is also an interaction obligation by N.Comm. By
definitions (19)—(20), this means that the modified specification is a valid refine-
ment of the original one, S_Comm ~», N_.Comm. The last obligation in Fig. 17
illustrates that new obligations may be added freely when using standard glass-box
refinement, ~..

Assume now that our communication network describes the emergency network
used by the police, that a police officer needs to communicate, but that the commu-
nication for some reason fails. In practice, a police officer may grab his personal
mobile phone and call his colleague. This is not a mandatory choice (the police
are not set up with personal mobile phones), but may be used as an alternative.
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sd N_Comm /l
| Arsender | G:N | | N1:N N2:N | N3N | | N4:N | i_B:raceiver
Iim _ | . : : : J
xalt | i )
p m m i B
—_— - - -
— i I
] 1
] m 1 )
— > : ! :
I ] | ]
| alt ) i i
. s m . m .
| & e e —— ———— |
1 ] 1 I
| b ; ; ' i .
] ] I
| | m | m
. ' ' i > —
1 L 1 ] 1
: — o ]
I 1.
i | |
] ] 1
i i i
] 1

Fig. 16: Refinement by adding behaviour.

Positive / / A->G->N2->N3->B /‘
A->G->N1->B A->G->N2->N4->B A->
Negative

Fig. 17: Semantics of N_Comm (Fig. 16).

The resulting specification is shown in Fig. 18. The opt-construct is a high-level
operator, which may be defined as

optd d alt skip (28)

The modified specification affects only the last of the interaction obligations in
Fig. 17, where a positive behaviour is added as illustrated in Fig. 19. By defini-
tion (19), this is a valid refinement as the negative trace-sets in both interaction
obligations are empty and the positive trace-set in the N_Comm one is a subset of
the new positive trace set in the M_Comm one:

{ {{m, A, G),2(m,A,G)) } C
{ {{(m,A,G), N m, A, G)),
(M(m,A,G),Am,A,G), (m,G, Mobile), 2(m, G, Mobile),
!(m, Mobile, B), 2(m, Mobile, B)) }
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[

\
n / / I‘\ /
Negative \\ \ /,, 9 /,

. sd M_Comm
. Asender G:N 1 m:N. NZ:N I N3N . N4:N Mobile:N I_B'.IECEiVEF I
AR o D]
i !
| m | |
! . N o |
] . alt m i
| S =N
| I m ! : ! "
! , 1 a |
) B il
—— 1 I o 0 |
Fig. 18: Refinement by adding behaviour.
/',’-d—__ ___h-mh-““\ f______--h“x"\ //"/’_F —_hqﬂ\\
Positive / N / A>G->N2->N3->B o A->G N
A->G->N1->B I;’ A>G->N2->N4->B [ A>G>Mobie->B

Fig. 19: Semantics of M_Comm (Fig. 18).

Notice that adding an extra lifeline (the mobile phone) to the interaction is un-
problematic, as all traces involving this new lifeline were considered inconclusive
in the original interaction.

5.3 Adding negative behaviour

The refinement examples in the previous section categorized earlier inconclusive
traces as positive. Similarly, earlier inconclusive traces may be categorized as nega-
tive, either by specifying the negative traces explicitly through the use of refuse, or
by using assert. In our network example, we decide that M_Comm is a complete
description of the possible behaviours, and that everything not in the interaction
should be considered negative. This gives us the interaction in Fig. 20.

The semantics of A_Comm is illustrated in Fig. 21. Comparing this with Fig. 19,
which illustrates the semantics of M_Comm, we see that A_Comm is obviously a
refinement of M_Comm, as we have the same positive trace-sets for both specifi-
cations and the original empty negative trace-sets are subsets of any set.
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Acsender | GIN | N1N NZ:N N3N MN4:N Mobile;N | Bireceiver

3
3

Ts
2
3
3

AT

Fig. 20: Adding negative behaviour.
A->G->N2->N3->B
A->G->Mobile->B \

Positive
A->G->N1->B A->G->N2->N4->B \
L | |
\
Negative everything else everything else everything else
"

Fig. 21: Semantics of A_Comm (Fig. 20).

5.4 Redefining positive behaviour as negative

Refinement may also be used to reduce the set of positive traces by redefining
them as negative. Looking at the specification in Fig. 20, we may decide that
there really is no need to have both communication choices specified by the alt-
construct. A refinement of this sub-specification could then be as given by Fig. 22.
The complete semantics for this refinement is illustrated in Fig. 23. We see that the
refined specification only affects the obligation in the middle. By definition (19),
this is a valid refinement step as the negative trace-set is extended and the traces
that were previously positive are now either positive or negative.

Another possible refinement of A_Comm could be to specify how the choice
between the different communication paths should be made. In the case of our
emergency network, using a mobile phone should only be an option if the main
network fails. In the interaction in Fig. 24, the node G makes the choice between
the different alternatives specified by the xalt-construct. Similarly, N2 makes the
choice between the alt-operands.
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N2:N

[_ NT:N |

Fig. 22: Redefining positive behaviour as negative,

Fig. 23: Semantics of A_Comm with the refinement in Fig. 22.

A->G->N1->B
everything else

|
m

|
[N |
xalt | [N1capacity ok]

[N2 capacity ok]

]

]

lelse]
1
T

Rami g

| Acsender ‘
T
i

sd G_Comm

Positive
Negative

Fig. 24: Introducing guards.
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We have assumed that G and N2 have information about the capacity of the
different nodes. This may in practice be achieved either by continuous information
back from the nodes (not shown in the described behaviour) or through evaluating
the communication historically relative to known parameters of the nodes. For our
purpose, it is not significant how G and N2 get their data. It is interesting, however,
that for xalt the two first guards may both be true, both false, or one true and one
false. All of these situations represent cases in real life. If both guards are true, the
choice between the two paths may be done arbitrarily. If both guards are false, the
else operand comes into effect.

We have not specified what should happen if both guards are false in the alt-
fragment. However, according to definition (17) giving the semantics of guarded
alt, this is equal to the empty trace, i.e. no further communication takes place.

Fig. 25 illustrates the semantics of G_.Comm. All traces with a false guard are
negative as specified by definitions (16)—(18). This makes G_Comm a valid refine-
ment of A_.Comm. In general, introducing guards in an alt- or xalt-construct will
always be a legal refinement step as proved in [15].

Positive - S
,/ A->G->[N1 ok]->N1->B B
( .
‘ A->G->[N1 not ok]->N1->B S
Negative everything else -
— -
e o

" “"“H..\\
/ A->G->[N2 ok]->N2->[N3 ok]->N3->B \\\
Positive A'>G->[N2 OkI-)N2'>[N4 Ok]'>N4‘>B
/" A->G->[N2 ok}->N2->[N3 not ok and N4 not ok] \.,|
| A-=>G->N2 not ok}->N2->[N3 ok or not ok]->N3->B |
Negative \ A->G->[N2 not ok]->N2->[N4 ok or not ok]->N4->B /
A->G->[N2 ok]->N2->[N3 not ok]->N3->B
S A->G->[N2 ok]->N2->[N4 not ok]->N4->B -
T~ eventhingelse

s

L
Positive e A->G->[N1 not ok and N2 not ok]
{/" A->G->[N1 not ok and N2 not ok]->Mobile->B N

\ /

\\ A->G->[N1 ok or N2 ok] S
. A->G->[N1okor N2 ok]->Mobile->B -~
T everything else _—

Negative

Fig. 25: Semantics of Fig. 24.
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5.5 Adding more details

As another example, assume that our sender and receiver suspect that somewhere
inside the network there is someone listening to and possibly manipulating their
messages. They would like to encrypt their messages and agree (openly) to ex-
change information to set up a secret key that they shall use for subsequent encryp-
tion. Following the procedure outlined by Simon Singh in [17] on how to achieve
exchanging of secret keys through insecure communication, we need to be able
to describe a number of similar sequences differing basically in the value of some
critical numbers.

In Fig. 26 we have shown the protocol with a generalized notation for xalt. We
have supplied the xalt with an extra clause which gives one or more parameters
with finite domains associated. This generalized notation is identical to replicating
the operand for all values of the variable inside the domain.

The behaviour of Fig. 26 means that the sender chooses a natural number (be-
tween 0 and 255 in this example) and from that calculates another natural (here in
the range 0... 10), and this calculated number is transmitted over the insecure net-
work to the receiver. The receiver does exactly the same the other way with a num-
ber that he/she chooses. From the numbers that they initially chose and the num-
bers that they received from each other, they are able to calculate a common key, p.

sd Secure J

| Asender —‘ i S:network ‘ ‘ B:receiver—‘
| - i |

_xalt {rla:t]...255y
[a=(7"na) mod 11]
|

| garbled(a)

garbled(a)

i

S L

._xalt {nb:O...ZSS]}

T
I

(b= (7**nb) mod 11]

garbled(b) | garbled(b) :

I
[
|
|
!
|

]
|
I
|

i (a**nb) mee

I ]

Fig. 26: Generalized xalt for the description of establishing a common secret key.



184 R. K. RUNDE, @. HAUGEN, K. STGLEN

This key is secret since the network does not have sufficient information to calcu-
late it directly. (Of course, in a real situation the one-way function will be more
complicated and the numbers far larger.)

To give a couple of concrete examples, we assume in Fig. 27 that the sender has
only the naturals 2 and 3 to choose from, while the receiver chooses only from 4
and 5. The specification in Fig. 27 gives rise to four interaction obligations (with
p =1,5,9 or 10), one for each possible combination of values for the two lifelines.
The choice between these should be nondeterministic, giving the intruder four pos-
sible values for the key. With more alternatives for na and nb, as in the original
specification, we get a lot of obligations and potential keys making it difficult for
the intruder to find the correct key by plain guessing or by trial-and-error.

In Fig. 28 we indicate a possible decomposition of the sender A in the first xalt-
construct in Fig. 26. A is decomposed into a random generator and a sender life-
line C. The generator loops a sufficient number of times, each time sending either
0 or I to the sender. Taken together, these messages will constitute the binary

sd Secure J

‘ A:sender ‘ ‘ S:network ‘ ‘ B:receiver
! T I
[ ) — i
xalt ) [a=(7"2) mod 11==5] | :
| garbled(s) i garbled(5)
| | il
........................... : . JI FoEE AN St |
[a=(7**3) mod 11 ==2] |
| |
| garbled(2) | garbled(2)

b = (7**4) mod 11 == 3]

garbled(3) garbled(3)

......... 1.
|

b= (7*5) mod 11 == 10]

garbled(10) . garbled(10)
- -

|
|
|
d
|
|
|
|
I

p = (b**na) mod 11 p =(a**nb) mod 11

| ' | |

Fig. 27: A few example-values for the generalized xalt.
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sd Secure’ ) |
| G:generator ‘ | C:sender lS:network ‘ B:receiver

loop {7} Jr
ED RO

| ]
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i~ | |

| na = na*2 I |

| | I

| | | |

. PRSSPRRpw—— | | |

] ] |

| |

|

|

I |

| |

| na=na*2 +1 I

| |

! !

| |
]

T
|
|
|
|
]
]
I
|
|
|
|
|

: {a=(7"*na)mod 11} |
! ' garbled(a) |

garbled(a)

A

Fig. 28: Refining generalized xalt by loop (and xalt).

representation of the number na in Fig. 26. Using xalt here, means that both 0
and I must be possible in each round in the loop, giving a totally nondeterministic
choice for na.

Simple calculations show that we will get the same possible values for na in both
diagrams, leading to the same obligations and the same values of the parameter a
in both cases, meaning that the decomposition is indeed a valid refinement.

6. Implementation

In this section we explain what we mean by an implementation and what it means
for an implementation to be correct with respect to a STAIRS specification.
Intuitively, if the specification has only one interaction obligation, a correct im-
plementation may only produce traces belonging to the positive and inconclusive
trace sets of the obligation, i.e. no negative trace must be produced by the imple-
mentation. With more than one interaction obligation, we may in general find the
same trace being positive in one obligation while negative in another.
Semantically, we represent implementations in the same way as we represent
interactions, namely by sets of interaction obligations. From a semantic point of
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view, an implementation is a special kind of specification characterized by the fol-
lowing three criteria:
o Its interaction obligations contain no inconclusive traces. Hence, each inter-
action obligation is of the form (p, H \ p), where p # 0.

o Whatever typecorrect input it receives from its environment it has at least
one output (doing nothing is for example also a response). This means that
for any possible environment behaviour, the implementation has at least one
trace that is consistent with this behaviour. This corresponds to the notion of
winning strategy in Focus [1].

o It behaves causally. Its behaviour at any point in time depends only on what
has happened in its past. This is obviously a characteristic of any real-life
system (but not necessarily a characteristic of a specification expressed by an
interaction). This corresponds to the notion of strong causality in Focus [1].

We say that an implementation / implements a STAIRS specification S if and only
if 7 is a limited refinement of S, i.e. [ S ]| ~; [ / ]I. This means that an implemen-
tation may not add interaction obligations beyond those given by the specification.

7. Conclusions

In this paper we have explored different kinds of nondeterminism and underspec-
ification, and motivated the need for having two different operators (alt and xalt)
for specifying alternative behaviours. Basically, alt defines implicit nondetermin-
ism in the sense of underspecification or abstraction, while xalt defines inherent
nondeterminism in the form of explicit choices that must all be present in a valid
implementation. We claim that together, these two operators are sufficient to cap-
ture the necessary distinctions.

In this paper we have also proposed an extension to STAIRS making it possible to
use guards to choose between both implicit (specified by alt) and explicit (specified
by xalt) nondeterminism. In particular, the proposed semantics ensures that adding
guards to a specification is a valid refinement step. It is straightforward to combine
this extension with Timed STAIRS [7], which extends STAIRS with time and three-
event semantics.

7.1 Related work

Most formalisms do not distinguish between nondeterminism and underspecifica-
tion as we have done here. In [18], Walicki and Meldal makes a similar distinction
in the setting of algebraic specifications. Their main motivation is that underspeci-
fication may some times in fact lead to overspecification, and that in these cases it
would be better to use explicit nondeterminism.

In LSC (Live Sequence Charts) [4, 5], charts, locations, messages and conditions
may all be characterized as either mandatory or provisional. Provisional charts
are called existential and they may happen if their initial condition holds. This
is comparable to potential alternatives in STAIRS. Mandatory charts in LSC are
called universal. Their interpretation is that provided their initial condition holds,
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these charts must happen. A universal chart specifies all allowed traces, and is
therefore not the same as mandatory alternatives in STAIRS, which only specifies
some of the traces that must be present in an implementation.

In [2], Cengarle and Knapp define the semantics of UML 2.0 interactions by
notions of positive and negative satisfaction. This approach has many similarities
with ours, but they do not distinguish between underspecification and explicit non-
determinism as we do in STAIRS. With respect to negative traces, their semantics
is somewhat different from ours. For alternatives, they define that a trace is nega-
tive only if it is negative in both operands. Also, they define that for all possible
traces, the trace is negative if a prefix of it is specified as negative, even though
the complete trace itself is not described by the diagram. This allows for earlier
identification of negative traces. In contrast, we regard such a trace as inconclu-
sive, arguing that if a trace is not described in the diagram, then the specifier has
either not thought about the situation or not wanted to classify it as either positive
or negative.

In this paper we have modelled data in interactions indirectly through special
events representing its use in assignments, constraints, and guards. An example
of an alternative approach may be found in [11], where Jonsson and Padilla define
a global semantics for an MSC (Message Sequence Chart) by using an Abstract
Execution Machine. Here, data are included in the model by associating with each
instance an environment consisting of its local variables together with those re-
ceived as message parameters.
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