
HOPSA � a High�level Programming Language

for Parallel Computations

Manfred Broy� Claus Dendorfer� Ketil St�len

SFB���� Technische Universit�at M�unchen

Arcisstra�e �	�
���� M�unchen

Email� broy�dendorfe�stoelen�informatik�tumuenchen�de

Abstract

The use of massive parallel computer architectures for the solution of compu�

tation intensive tasks requires speci�c programming concepts and thus makes pro�

gramming more di�cult� This is because the parallel execution and the particular

properties of the chosen machine architecture must be taken into consideration� An

abstract programming language more closely re�ecting the speci�cation notation is

therefore desirable� Programs written in this language should allow a translation

into e�cient code for massive parallel computers� In that connection� one may ask�

which aspects of parallel programming should be treated explicitly in the source
code� and which aspects 	like load balancing� parallelization and process admin�

istration
 should be generated by a translator with certain analyzing capabilities�

Our long term goal is the implementation of such a language based� for example� on

the operating system MMK� Multitasking Multiprocessing Kernel� which has been

developed at the Technische Universit�at M�unchen�

� Introduction
App
eared
in� Proc�
Euro
AR
CH����
pages
�������
Springer
	����

Because of the very complicated process interactions� parallel programming is much more
di�cult than programming in traditional sequential languages� Since parallel programs
often are expected to work in environments where high reliability is essential �telecom
munication� industrial process controlling etc��� some means are needed to develop such
programs in a systematic fashion� and to formally verify their critical parts with respect
to speci�cations� As an additional di�culty� in many cases� because of high performance
requirements� massive parallel machines have to be used� Therefore the programs must
be written in languages which permit translation into e�cient code for such architectures�
Such languages should o�er a suitable model for parallel processing that does not depend
upon a particular computer architecture and therefore can be adapted to a variety of
machines� Hence there are �at least� four major issues to consider in the development of
realistic parallel programs�

� ease of programming and appropriate programming concepts�

� reasonably e�cient implementation�

	

� embedding into a development method which allows for formal veri�cation�

� suitable abstraction from concrete computer architectures�

In this introduction� we will discuss some approaches to parallel programming with respect
to these criteria�

Conventional sharedstate languages with parallel constructs like some dialects of FOR
TRAN usually provide very e�cient implementations� However� in such programming
languages even the behavior of programs consisting of only a few lines of code can be
hard to �gure out� Moreover� large and complicated proofs are often required to formally
verify that such programs satisfy certain properties� For many of these languages there is
not even a proper semantics�

An interesting new development are �parallel� languages that have no explicit parallel
constructs at all� This is for example the case in Jade �RSL���� where a �parallel� program
is basically a sequential program augmented with pragmatic declarations intended to
help the compiler �nd a sensible parallelization� All parallel executions of a Jade program
deterministically generate the same result as a sequential execution� Thus nondeterminism
and timedependencies� which normally make parallel programs hard to debug� cannot
occur� Standard re�nement calculi for sequential programs like �Jon���� �Mor��� can
easily be extended to allow for the development of programs in a language like Jade
�see for example �Len
���� However� the fact that nondeterminism and timedependency
cannot occur also indicates the weaknesses of this approach� only a restricted amount
of parallelization can be gained� and moreover� the language is unsuitable for modeling
inherently concurrent systems like communication systems�

Sequential programming languages are often �parallelized� by adding some additional
programming constructs for parallel executions� Linda �CG
�� is a formalism for con
ducting such extensions� Linda only deals with process creation and communication� The
actual computing must be coded in the sequential language in which Linda is embedded�
Linda can be used to model coarse� medium and �negrained approaches to parallelism�
The communication primitives of Linda are quite lowlevel� which means that the use of
formal methods can be di�cult�

PCN �FT�	� is a procedural language with explicit programming constructs for parallel
execution� The individual processes are coded in C� and processes can communicate only
over de�nitional variables� A de�nitional variable is initially unde�ned� and what is there
after assigned to it can never be overwritten� This ensures that there is no nondeterminism
due to di�erent interleavings of atomic statements� Since de�nitional variables for exam
ple can be of type stream� stepwise read�write communication is possible� The creators
of PCN estimate that only �� of the total execution time is spent by the parts written in
PCN code� Thus� the overhead is low� Moreover� the exclusive use of de�nitional variables
simpli�es formal reasoning�

Another wellknown concept for procedural parallel languages appears in formalisms like
CSP �Hoa
�� and languages like Occam �Ltd

�� A CSP process can only send and receive
messages by synchronous communication� This means that the processes interact in a
much more controlled way than in a sharedstate language� A problem is that Occam is
not really a highlevel language� it is rather designed for lowlevel system programming�

There are also many approaches to parallel programming in the objectoriented tradi
tion� However� so far there are no fully compositional development methods for this type

�

of languages �some interesting preliminary attempts are described in �Ame
��� �Jon����
�Mey�����

Often it is claimed that declarative languages are easier to use� For example� pure func
tional languages like Haskell �HW��� seem to be very convenient for programming� Also
the e�ciency of sequential implementations of these languages has been improved to such
a degree that functional and C �KR

� programs reach the same order of magnitude in ex
ecution times �AJ
��� Because functional programming is very close to writing equations�
it is quite easy to design such programs and reason about them� Theoretically� functional
programs can be executed both by sequential and parallel machines without modi�cation
�PJ
��� �Rep�	�� There is� however� currently no e�cient distributed implementation of
such a programming language� An additional problem is that functional programming
languages o�er too many constructs that do not �t well into a development method� We
think that by suitably restricting the programming languages program engineering be
comes easier� Note that there are also approaches which enrich functional programming
languages with explicit parallel constructs and communication primitives �see for example
�vENPS�����

There are a number of other languages which claim to be both easy to use and speci�cation
close� In some application areas� the use of executable speci�cation languages has become
standard� for example in the �eld of communication systems �Hog
��� For less specialized
applications� it can be argued that some sort of logic programming language would be very
suitable� However� we do not think that programs written in such a language are more
understandable than functional programs� and the implementations of logic programming
languages are much less e�cient� Constraint programming may be an alternative� but
currently it is di�cult to use �see �SHW�����

In this paper we will present a simple� data�ow like� functional language� called HOPSA�
currently being designed at the Technische Universit�at M�unchen� In this language� the
sequential processes are coded in functional programming notation� while �standard�
communication tools are employed to connect the processes in a systematic way� The
communication structure is basically characterized by a set of equations�

Programs written in this language are easy to write� A development method for HOPSA
programs� called Focus� is also available� HOPSA programs are speci�cation close and
therefore wellsuited for formal program development�

All the mentioned programming languages have their respective merits� However� they
di�er from HOPSA in that the latter has been specially designed to meet the four require
ments stated above� In this paper� we will devote one section to each of these requirements�
In particular� we will comment on

� the programming language HOPSA�

� a possible implementation of HOPSA�

� the development method Focus aimed at writing correct HOPSA programs�

� methods to map HOPSA programs onto di�erent computer architectures using dy
namic load balancing techniques�

�

� The Programming Language HOPSA

A HOPSA program can be modeled in terms of networks of agents� Each agent has a
�xed number of input�output ports� which are connected to other agents by directed�
asynchronous communication channels� Agents communicate only via these channels�
This model is compositional in the sense that whole networks of agents can be viewed as
agents again� Hence there are two types of agents�

� basic agents� which can be thought of as the sequential processes of our language or
the atomic building blocks performing the computations�

� composite agents� i�e� agents representing whole networks of agents�

A HOPSA program consists of three disjoint sets of declarations�

� declarations of basic agents�

� declarations of composite agents�

� declarations of channels�

The declaration of a basic agent is nothing else than a functional program de�ning a
continuous function which� given a tuple of complete input histories represented by the
streams of messages received on the input channels� yields a tuple of complete output
histories represented by the streams of messages sent along the output channels� The
syntax for the declaration of basic agents does not di�er signi�cantly from the syntax of
wellknown functional languages like Haskell or ML �HMM
��� An example is given in
Figure ��

The declaration of a composite agent is basically a let construct with a set of channel
declarations� characterizing a network of agents� in its body�

The declaration of a channel is an equation with free channel variables� It characterizes
the way messages are assigned to channels�

The declarations of channels together with the declarations of composite agents constitute
what we will refer to as the network de�nition�

The network de�nition of a simple sorting network is given in Figure 	 and represented
graphically in Figure �� It consists of two channel declarations de�ning the channels i and
o� respectively� and a declaration of the composite agent sort� which has two additional
channel declarations in its righthand side� frontend and cell are basic agents� frontend
basically sends the sequence of messages to be sorted along i and receives the sorted
sequence on o�

The functional de�nition of cell is given in Figure �� The agent cell can store one message
and has two input channels and two output channels� If the next message received along
its �rst input channel is less than the stored message� the new message is stored� and
the old message is sent along its second output channel� otherwise the stored message
remains in its store� and the new message is forwarded� When a special end of sequence
message eof is received� the agent cell passes this message on� sends the stored message

�

i frontend�o�

o await i then sort�i�

sort�c� let

�d� b� cell�c� a�
a await b then sort�b�

in d

Figure 	� Network De�nition of the Sorting Network�

cell � StreamData� StreamData � StreamData� StreamData

store � Data� StreamData� StreamData � StreamData� StreamData

copy � StreamData� StreamData � StreamData� StreamData

cell�eof ! i� a� �eof� hi� ! cell�i� a�
cell�d ! i� a� store�d� i� a�

store�s� eof ! i� a� �s� eof� ! copy�i� a�
store�s� d ! i� a� �hi� max�s� d�� ! store�min�s� d�� i� a�

copy�i� eof ! a� �eof� hi� ! cell�i� a�
copy�i� d ! a� �d� hi� ! copy�i� a�

Figure �� Functional De�nition of a Single Sort Cell�

frontend cell cell

�

�

�

�

�

�

sort

sort

i

o

b

a

Figure �� Graphical Representation of the Sorting Network�

"

along the �rst output channel� and thereafter forwards the messages it receives on its
second input channel along its �rst output channel until it once more receives the end of
sequence message� which has been �re�ected� by the �rst cell not storing a message�

Clearly� the unfolding of the potentially in�nite network of sort cells must be conducted
in line with the progress of the computation� so that there are always �enough� sort cells
available� and� at the same time� only the required number of sort cells is created� This is
the task of the composite agent sort� i�e� it controls the unfolding of the sorting algorithm�
Each sort call creates a new cell agent� and when �if at all� the �rst message is received
on the local channel b� a new sort agent is also created� Thus� await b then sort�b� waits
until a message is received on b and then creates a new sort agent� As a result we get
an unbounded �potentially in�nite� list of sorting cells which forward new messages until
they �fall� in place and then send them back in sorted order� The algorithm is linear with
respect to both time and space�

Observe that in channel declarations global names for channels are introduced� while the
channel variables occurring in� say� sort� are just formal parameters� If we substitute i

and o for respectively c and d in sort we get exactly the same network� However� if we
substitute c and d for respectively i and o in the second channel declaration only� we get
a network with four unconnected channels�

The await construct may seem unnecessary at a �rst glance� An obvious alternative
would be �lazy creation�� where each process is created as soon as the �rst input message
arrives� However� this would lead to unexpected results for agents declared� for example�
by f�x� h	� �� �i� Such an agent would only produce output if at least one input
message is received on its input channel� which does not agree with its �seemingly� obvious
equational de�nition� Therefore� we decided to control process creation explicitly in terms
of the await construct�

A second alternative would be to implement a demand driven process creation mechanism�
where new processes are only created if their output is actually needed� However� this
would require the use of a requestsupply protocol for each of the asynchronous channels�
which does not �t very well into the simple framework of asynchronous communication�

� The Implementation of HOPSA

Some implementation experiments have been carried out based on the core language
as de�ned above� In particular� a compiler has been written that translates network
de�nitions into system calls of MMK �BKMR�	�� MMK provides basic process creation
mechanisms and supports process communication in terms of socalled mailboxes� These
mailboxes can be con�gured in a number of ways� in particular they can be used to
approximate asynchronous� bu�ered channels �in fact there is a maximum bu�er length�
which we disregarded in our experiments��

The compiler is a rather small program written in Standard ML� which takes HOPSA pro
grams and produces a variety of �les that are further processed by an MMK preprocessor
and the standard C compiler�

Up to now� the sequential agents themselves have to be written in pure C extended with
some of MMK�s communication instructions� A compiler for the translation of sequential
agents written in the functional programming notation is of course also planned� However�

�

since the sequential implementation of functional languages is quite well understood� we
have so far concentrated on the implementation of the network de�nitions�

� The Development Method Focus

Focus is a general framework� in the tradition of �Kah#��� �Kel#
�� for the formal spec
i�cation and development of distributed systems� A system is modeled by a network
of agents communicating asynchronously via unbounded FIFO channels� A large num
ber of di�erent reasoning styles and techniques is supported �see for example �BDD�����
�Bro��c�� �Bro��a�� �SDW�����

Focus provides mathematical formalisms which support the formulation of highly ab
stract� not necessarily executable speci�cations with a clear semantics� Moreover� Focus
o�ers powerful re�nement calculi� which allow distributed systems to be developed in the
same style as sequential programs can be developed in VDM �Jon��� and the re�nement
calculi of �Bac

�� �Mor���� Finally� Focus is modular in the sense that design decisions
may be checked at the point where they are taken� that component speci�cations can be
developed in isolation� and that already completed developments can be reused�

A development of a program in Focus can be split into three main phases�

� a requirement phase where the requirement speci�cation is formulated�

� a design phase where the architecture independent system development is carried
out�

� an implementation phase where the system speci�cation is mapped onto a particular
architecture�

Any Focus speci�cation can be modeled by a set of timed stream processing functions
as de�ned in �Bro��b�� The same type of semantics can be assigned to HOPSA� Because
of the close relationship between stream processing functions and the programming nota
tion in HOPSA� Focus is particularly suited for the development of HOPSA programs�
HOPSA may be used either as the �nal implementation language or as an executable
prototype language�

� The Mapping of Agents onto Processors

A network of agents characterized by a HOPSA program must be mapped onto a real
processor architecture in some suitable way� As for example in UNITY �CM

�� a HOPSA
program as de�ned above only speci�es the maximum possible parallelism� Considering
that communication usually is rather expensive� it is not sensible to map every single
agent to a new processor� This is especially obvious in the sorting example above� where
a sort cell only stores one data element� and the number of sort cells required equals the
length of the input�

Such a mapping from agents �and channels� to processors is a very basic theoretical con
cept� Nevertheless� it allows us to model and analyze all di�cult pragmatic questions

#

of process scheduling and load balancing� The mapping may change dynamically� i�e�
during the execution of the program� which mirrors dynamic load balancing and process
migration� An interesting question at this point is of course to what degree this map
ping should �and can� be expressed explicitly in the HOPSA language� and how e�cient
heuristic mapping strategies are�

� Extensions

As already pointed out� the HOPSA language is still at an experimental stage� In fact so
far only a core language has been �xed� and a number of extensions are currently being
considered�

In particular additional constructs for the manipulation of dynamic networks are needed�
Currently� a network can be expanded via the await construct� However� there is no
possibility to shrink a network by deleting agents and channels� Thus� pulsating networks
cannot be expressed in the current version of HOPSA� One relatively straightforward
extension to handle this problem is to have a construct which kills some part of the network
structure when a certain end of computation message is received� For example with respect
to the sorting algorithm above� we could employ this construct in the declaration of sort
to kill the next cell and sort agents together with the local channels b and a when a certain
message is received on the channel a� Here the question arises whether agents should be
�killed� or �sent asleep�� i�e�� whether agents that are repeatedly deleted and created in a
pulsating network should each time start from the same initial state� or from the last state
of the previous incarnation� This leads also to questions regarding the garbage collection
of processes�

We are also considering more general types of agent communications such as broadcasting�
The communication of higherorder messages can also be used to express dynamic net
works� Higherorder messages are nothing else than agents communicated via channels�
Some interesting implementation issues arise when higherorder messages are allowed� for
example whether the whole program should be transferred or just a pointer to the �shared�
code and some status information�

It is wellknown that certain weakly timedependent agents like fair merge are hard to
express in a functional setting �Kel#
�� One straightforward way to handle this problem
in HOPSA is to incorporate a speci�c fair merge construct �Bro

�� This construct char
acterizes an agent performing a fair merge of the messages received on its input channels�
This construct can be modeled in the same way as any other HOPSA agent $ by a set
of timed stream processing functions�

The issue of dynamic network recon�guration deserves further attention� The Focus
framework seems to be wellsuited for the�

� description of dynamic networks�

� recon�guration of networks during execution�

� mapping of dynamic process networks onto static networks of processors�

� recon�guration of processor mappings�

These issues are of high importance for the modeling of distributed systems� We plan to
study them in more detail in the future�

� Conclusions

In this paper we have advocated the use of a highlevel� data�ow like� functional pro
gramming language called HOPSA� We have outlined a possible implementation� a design
methodology� and some thoughts about e�cient execution on parallel hardware�

Because

� the individual� sequential agents are conveniently coded in a functional programming
notation�

� an e�cient implementation is possible since the communication structure is given
explicitly�

� the programming language is embedded into a formal development method�

� the concept of agents and channels� which are dynamically mapped onto processors�
provides a suitable abstraction level for the writing of parallel programs�

we claim that the concept on which HOPSA is based meets the basic requirements stated
in the introduction�

References

�AJ
�� L� Augustsson and T� Johnsson� The Chalmers lazyML compiler� The Com�
puter Journal� ���	�#%	�	� 	�
��

�Ame
�� P� America� Issues in the design of a parallel objectoriented language� Formal
Aspects of Computing� 	����%�		� 	�
��

�Bac

� R� J� R� Back� A calculus of re�nments for program derivations� Acta Infor�
matica� �"�"��%���� 	�

�

�BDD���� M� Broy� F� Dederichs� C� Dendorfer� M� Fuchs� T� F� Gritzner� and R� Web
er� The design of distributed systems $ an introduction to Focus� Technical
Report SFB �������� A� Technische Universit�at M�unchen� 	����

�BKMR�	� T� Bemmerl� C� Kasperbauer� M� Mairandres� and B� Ries� Programming
tools for distributed multiprocessor computing environments� Technical Re
port SFB �����	��	 A� Technische Universit�at M�unchen� 	��	�

�Bro

� M� Broy� Nondeterministic data �ow programs� How to avoid the merge
anomaly� Science of Computer Programming� 	���"%
"� 	�

�

�Bro��a� M� Broy� Compositional re�nement of interactive systems� Working Material�
International Summer School on Program Design Calculi� August 	����

�

�Bro��b� M� Broy� Functional speci�cation of time sensitive communicating systems�
In M� Broy� editor� Proc� Programming and Mathematical Method� Summer�
school� Marktoberdorf� pages ��"%��#� Springer� 	����

�Bro��c� M� Broy� �Inter� action re�nement� the easy way� Working Material� Inter
national Summer School on Program Design Calculi� August 	����

�CG
�� N� Carriero and D� Gelernter� Linda in context� Communications of the ACM�
������%�"
� 	�
��

�CM

� K� M� Chandy and J� Misra� Parallel Program Design� A Foundation�
AddisonWesley� 	�

�

�FT�	� I� Foster and S� Tuecke� Parallel programming with PCN� Technical Report
ANL�	���� Version 	��� Argonne National Laboratory� 	��	�

�HMM
�� R� W� Harper� D� B� MacQueen� and R� G� Milner� Standard ML� Technical
Report ECSLFCS
��� University of Edinburgh� 	�
��

�Hoa
�� C� A� R� Hoare� Communicating Sequential Processes� PrenticeHall� 	�
��

�Hog
�� D� Hogrefe� Estelle� LOTOS and SDL� Standard�Spezi�kationssprachen f�ur
verteilte Systeme� Springer� 	�
��

�HW��� P� Hudak and P� Wadler� Report on the programming language Haskell�
Technical Report YALEU�DCS�RR###� Yale University� 	����

�Jon��� C� B� Jones� Systematic Software Development Using VDM� Second Edition�
PrenticeHall� 	����

�Jon��� C� B� Jones� An objectbased design method for concurrent programs� Tech
nical Report UMCS��	�	� University of Manchester� 	����

�Kah#�� G� Kahn� The semantics of a simple language for parallel programming�
In J� L� Rosenfeld� editor� Proc� Information Processing ��� pages �#	%�#"�
NorthHolland� 	�#��

�Kel#
� R� M� Keller� Denotational models for parallel programs with indeterminate
operators� In E� J� Neuhold� editor� Proc� Formal Description of Programming
Concepts� pages ��#%���� NorthHolland� 	�#
�

�KR

� B� W� Kernighan and D� M� Ritchie� The C Programming Language� Prentice
Hall� 	�

�

�Len
�� C� Lengauer� A Methodology for Programming with Concurrency� PhD thesis�
University of Toronto� 	�
��

�Ltd

� INMOS Ltd�� editor� Occam 	 Reference Manual� Prentice Hall� 	�

�

�Mey��� B� Meyer� Systematic concurrent objectoriented programming� Technical
Report TREI�#�SC� ISE� Santa Barbara� 	����

�Mor��� C� Morgan� Programming from Speci�cations� PrenticeHall� 	����

�PJ
�� S� L� Peyton Jones� Parallel implementations of functional programming lan
uages� The Computer Journal� ���	#"%	
�� 	�
��

	�

�Rep�	� J� H� Reppy� Concurrent Programming with Events
 The Concurrent ML
Manual� Cornell University� 	��	�

�RSL��� M� C� Rinard� D� J� Scales� and M� S� Lam� Heterogeneous parallel program
ming in Jade� In Proceedings of Supercomputing��	� pages ��"%�"�� 	����

�SDW��� K� St�len� F� Dederichs� and R� Weber� Assumption�commitment rules for
networks of asynchronously communicating agents� Technical Report SFB
�������� A� Technische Universit�at M�unchen� 	����

�SHW��� G� Smolka� M� Henz� and J� W�urtz� Object oriented concurrent constraint
programming in OZ� Technical Report RR��	�� DFKI� 	����

�vENPS��� M� van Eekelen� E� N�ocker� R� Plasmeijer� and S� Smetsers� Concurrent Clean
Manual�� University of Nijmegen� 	����

		

